Báo cáo toán học: "Distinguishing Chromatic Numbers of Bipartite Graphs"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Distinguishing Chromatic Numbers of Bipartite Graphs. | Distinguishing Chromatic Numbers of Bipartite Graphs C. Laflamme and K. Seyffarth Submitted Sep 9 2008 Accepted Jun 18 2009 Published Jun 25 2009 Mathematics Subject Classification 05C15 05C25 Abstract Extending the work of . Collins and A. N. Trenk we characterize connected bipartite graphs with large distinguishing chromatic number. In particular if G is a connected bipartite graph with maximum degree A 3 then XD G 2A 2 whenever G Ka-i a Ka a- 1 Introduction A colouring of a graph G is an assignment of labels colours to the vertices of G the colouring is proper if and only if adjacent vertices receive different labels and the colouring is distinguishing provided that no automorphism of G other than the identity preserves the labels. The distinguishing chromatic number of G written XD G is the minimum number of labels required to produce a colouring that is both proper and distinguishing. The distinguishing chromatic number is introduced by . Collins and . Trenk 3 as a natural extension of the distinguishing number of a graph defined by . Albertson and . Collins 1 . In 3 Collins and Trenk compute the distinguishing chromatic number for various classes of graphs. In particular they characterize the connected graphs with maximum possible distinguishing chromatic number showing that XD G V G if and only if G is a complete multipartite graph 3 Theorem . Further they show that for a connected graph G with maximum degree A XD G 2A with equality if and only if G Ka a or G C6 a cycle of length six 3 Theorem . For connected graphs with A 2 they also completely determine the distinguishing chromatic number. Note that if G is Department of Mathematics and Statistics University of Calgary Calgary Alberta Canada T2N 1N4 laflamme@. Supported by NSERC of Canada Department of Mathematics and Statistics University of Calgary Calgary Alberta Canada T2N 1N4 kseyffar@ THE ELECTRONIC JOURNAL OF COMBINATORICS 16 2009 R76 1 connected and

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
476    16    1    24-11-2024
24    17    1    24-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.