Báo cáo toán học: "Lower Bounds for q-ary Codes with Large Covering Radius"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: Lower Bounds for q-ary Codes with Large Covering Radius. | Lower Bounds for q-ary Codes with Large Covering Radius Wolfgang Haas Immanuel Halupczok Jan-Christoph Schlage-Puchta Albert-Ludwigs-Universitat Mathematisches Institut Eckerstr. 1 79104 Freiburg Germany wolfgang_haas@ math@ j csp@ Submitted Jan 12 2009 Accepted Oct 27 2009 Published Nov 7 2009 Mathematics Subject Classification 94B65 Abstract Let Kq n R denote the minimal cardinality of a q-ary code of length n and covering radius R. Recently the authors gave a new proof of a classical lower bound of Rodemich on Kq n n 2 by the use of partition matrices and their transversals. In this paper we show that in contrast to Rodemich s original proof the method generalizes to lower-bound Kq n n k for any k 2. The approach is best-understood in terms of a game where a winning strategy for one of the players implies the non-existence of a code. This proves to be by far the most efficient method presently known to lower-bound Kq n R for large R . small k . One instance the trivial sphere-covering bound K12 7 3 729 the previously best bound K12 7 3 732 and the new bound K12 7 3 878. Keywords covering codes lower bounds partition matrices. The second author was supported by the Fondation Sciences mathematiques de Paris. THE ELECTRONIC JOURNAL OF COMBINATORICS 16 2009 R133 1 1 Introduction Let q 2 and Zq 0 1 . q 1 . The Hamming distance d x y between x xo . Xn-1 G zq and y yo . yn-1 G zq is defined by d x y i G 0 . . n 1 Xi yi . We say C c zq is a q-ary code of length n and covering radius at most R if Vx G zq 3y G C with d x y R 1 is satisfied. Let Kq n R denote the minimal cardinality of a q-ary code of length n and covering radius R. For a monograph on covering codes see 2 . An updated table of bounds on Kq n R is published online by Keri 5 . An easy lower bound on Kq n R is the sphere-covering bound z _ . qn KqR V R 2 where C Vq n R y G zq d y x Í R w n q I i 0 i R denotes the cardinality of a Hamming-sphere with radius R centered on an .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.