Báo cáo toán học: "Mutually Disjoint Steiner Systems S(5, 8, 24) and 5-(24, 12, 48) Designs"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Department of Mathematic dành cho các bạn yêu thích môn toán học đề tài:Mutually Disjoint Steiner Systems S(5, 8, 24) and 5-(24, 12, 48) Designs. | Mutually Disjoint Steiner Systems S 5 8 24 and 5- 24 12 48 Designs Makoto Araya Masaaki Harada Department of Computer Science Shizuoka University Hamamatsu 432-8011 Japan araya@ Department of Mathematical Sciences Yamagata University Yamagata 990-8560 Japan and PRESTO Japan Science and Technology Agency Kawaguchi Saitama 332-0012 Japan mharada@ Submitted Aug 4 2009 Accepted Dec 9 2009 Published Jan 5 2010 Mathematics Subject Classifications 05B05 Abstract We demonstrate that there are at least 50 mutually disjoint Steiner systems S 5 8 24 and there are at least 35 mutually disjoint 5- 24 12 48 designs. The latter result provides the existence of a simple 5- 24 12 6m design for m 24 32 40 48 56 64 72 80 112 120 128 136 144 152 160 168 200 208 216 224 232 240 248 and 256. 1 Introduction A t- v k A design D is a pair of a set X of v points and a collection B of k-subsets of X called blocks such that every t-subset of X is contained in exactly A blocks. We often denote the design D by X B . A design with no repeated block is called simple. All designs in this note are simple. A Steiner system S t k v is a t- v k A design with A 1. Two t- v k A designs with the same point set are said to be disjoint if they have no blocks in common. Two t- v k A designs are isomorphic if there is a bijection between their point sets that maps the blocks of the first design into the blocks of the second design. An automorphism of a t- v k A design D is any isomorphism of the design with itself and the set consisting of all automorphisms of D is called the automorphism group Aut D of D. The well-known Steiner system S 5 8 24 and a 5- 24 12 48 design are constructed by taking as blocks the supports of codewords of weights 8 and 12 in the extended Go-lay 24 12 8 code respectively. It is well known that there is a unique Steiner system S 5 8 24 up to isomorphism 8 and there is a unique 5- 24 12 48 design having even THE ELECTRONIC JOURNAL OF .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
117    16    1    06-07-2022
120    30    2    06-07-2022
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.