# Báo cáo toán học: "Proof of the combinatorial nullstellensatz over integral domains, in the spirit of Kouba"

## Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Department of Mathematic dành cho các bạn yêu thích môn toán học đề tài: Proof of the combinatorial nullstellensatz over integral domains, in the spirit of Kouba. | Proof of the combinatorial nullstellensatz over integral domains in the spirit of Kouba Peter Heinig Lehr- und Forschungseinheit M9 fur Angewandte Geometrie und Diskrete Mathematik Zentrum Mathematik Technische Universitat Munchen Boltzmannstrafie 3 D-85748 Garching bei Munchen Germany heinig@ Submitted Jan 4 2010 Accepted Feb 11 2010 Published Feb 22 2010 Mathematics Subject Classification 2010 13G05 15A06 Abstract It is shown that by eliminating duality theory of vector spaces from a recent proof of Kouba A duality based proof of the Combinatorial Nullstellensatz Electron. J. Combin. 16 2009 N9 one obtains a direct proof of the nonvanishing-version of Alon s Combinatorial Nullstellensatz for polynomials over an arbitrary integral domain. The proof relies on Cramer s rule and Vandermonde s determinant to explicitly describe a map used by Kouba in terms of cofactors of a certain matrix. That the Combinatorial Nullstellensatz is true over integral domains is a well-known fact which is already contained in Alon s work and emphasized in recent articles of Michalek and Schauz the sole purpose of the present note is to point out that not only is it not necessary to invoke duality of vector spaces but by not doing so one easily obtains a more general result. 1 Introduction The Combinatorial Nullstellensatz is a very useful theorem see 1 about multivariate polynomials over an integral domain which bears some resemblance to the classical Nullstellensatz of Hilbert. Theorem 1 Alon Combinatorial Nullstellensatz ideal-containment-version Theorem in 1 . Let K be a field R c K a subring f E R x1 . xn S1 . Sn arbitrary nonempty subsets of K and g ỊỊ seS. Xi s for every 1 i n. If f s1 . sn 0 The author was supported by a scholarship from the Max Weber-Programm Bayern and by the ENB graduate program TopMath. THE ELECTRONIC JOURNAL OF COMBINATORICS 17 2010 N14 1 for every s1 . Sn G S1 X X Sn then there exist polynomials h. G R x1 . xn with the property that deg h. deg

TÀI LIỆU LIÊN QUAN
32    85    0
45    80    0
6    107    0
4    73    0
6    90    0
6    94    0
6    80    0
5    83    0
7    99    0
6    104    0
TÀI LIỆU XEM NHIỀU
13    41262    2427
3    25214    250
25    24895    4301
16    20365    2847
20    19765    1551
14    19675    2978
1    19586    622
3    16441    331
37    16438    2960
1    15046    136
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
8    66    1    20-07-2024
5    146    2    20-07-2024
40    176    2    20-07-2024
14    269    3    20-07-2024
22    197    8    20-07-2024
4    101    2    20-07-2024
6    141    1    20-07-2024
28    91    1    20-07-2024
50    144    1    20-07-2024
12    279    1    20-07-2024
105    379    9    20-07-2024
86    101    4    20-07-2024
77    98    3    20-07-2024
5    411    1    20-07-2024
6    944    8    20-07-2024
138    130    7    20-07-2024
5    453    1    20-07-2024
66    110    2    20-07-2024
79    111    7    20-07-2024
13    75    1    20-07-2024
TÀI LIỆU HOT
3    25214    250
13    41262    2427
3    3024    81
580    5352    364
584    3582    101
62    6936    1
171    5946    721
2    3405    78
51    4703    200
53    5007    189
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.