# Báo cáo toán học: "Bijection between bigrassmannian permutations maximal below a permutation and its essential set"

## Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Department of Mathematic dành cho các bạn yêu thích môn toán học đề tài:Bijection between bigrassmannian permutations maximal below a permutation and its essential set. | Bijection between bigrassmannian permutations maximal below a permutation and its essential set Masato Kobayashi Department of Mathematics the University of Tennessee Knoxville TN 37996 USA kobayashi@ Submitted Aug 23 2009 Accepted May 10 2010 Published May 20 2010 Mathematics Subject Classification 20F55 20B30 Abstract Bigrassmannian permutations are known as permutations which have precisely one left descent and one right descent. They play an important role in the study of Bruhat order. Fulton introduced the essential set of a permutation and studied its combinatorics. As a consequence of his work it turns out that the essential set of bigrassmannian permutations consists of precisely one element. In this article we generalize this observation for essential sets of arbitrary permutations. Our main theorem says that there exists a bijection between bigrassmanian permutations maximal below a permutation and its essential set. For the proof we make use of two equivalent characterizations of bigrassmannian permutations by Lascoux-Schutzenberger and Reading. 1 Introduction Bigrassmannian elements play an important role in study of the Bruhat order on Coxeter groups. They are known as elements which have precisely one left descent and one right descent. In particular in the symmetric group type A bigrassmannian permutations have two other equivalent characterizations one as join-irreducible permutations and one as monotone triangles with some minimal condition we will see detail of these in Fact . Here let us recall the definitions of join and join-irreducibility from poset theory. Definition . Let P c be a finite poset and Q c P. Then consider the set x G P x y for all y G Q . If this set has a unique minimal element we call it the join of Q denoted by V Q. Define the meet of Q A Q order dually. P is said to be a lattice if V Q and A Q exist for all Q. We say that x G P is join-irreducible if whenever x V Q then x G Q. THE ELECTRONIC JOURNAL OF .

TÀI LIỆU LIÊN QUAN
32    57    0
45    42    0
6    65    0
4    53    0
6    55    0
6    52    0
6    45    0
5    59    0
7    58    0
6    64    0
TÀI LIỆU XEM NHIỀU
13    32439    1647
3    19340    204
25    18624    3682
20    16741    1476
16    15760    2481
14    14312    2540
37    13036    2802
1    11315    401
3    10955    211
23    10546    384
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
14    15    1    02-07-2022
17    14    1    02-07-2022
113    82    1    02-07-2022
75    11    1    02-07-2022
11    7    1    02-07-2022
9    5    1    02-07-2022
82    18    1    02-07-2022
6    5    1    02-07-2022
10    12    1    02-07-2022
5    16    1    02-07-2022
7    7    1    02-07-2022
19    17    2    02-07-2022
59    14    1    02-07-2022
17    15    1    02-07-2022
11    31    1    02-07-2022
4    5    1    02-07-2022
12    16    1    02-07-2022
54    8    1    02-07-2022
45    43    2    02-07-2022
6    19    2    02-07-2022
TÀI LIỆU HOT
3    19340    204
13    32439    1647
3    1490    75
580    3626    343
584    1956    80
62    4381    1
171    3981    620
2    1738    72
51    2467    150
53    3332    175
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.