# Báo cáo toán học: "On Stanley’s Partition Function"

## Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Department of Mathematic dành cho các bạn yêu thích môn toán học đề tài:On Stanley’s Partition Function. | On Stanley s Partition Function William Y. C. Chen1 Kathy Q. Ji2 and Albert J. W. Zhu3 Center for Combinatorics LPMC-TJKLC Nankai University Tianjin 300071 . China 1chen@ 2ji@ 3zjw@ Submitted Jun 12 2010 Accepted Aug 19 2010 Published Sep 1 2010 Mathematics Subject Classification 05A17 Abstract Stanley defined a partition function t n as the number of partitions A of n such that the number of odd parts of A is congruent to the number of odd parts of the conjugate partition A modulo 4. We show that t n equals the number of partitions of n with an even number of hooks of even length. We derive a closed-form formula for the generating function for the numbers p n t n . As a consequence we see that t n has the same parity as the ordinary partition function p n . A simple combinatorial explanation of this fact is also provided. 1 Introduction This note is concerned with the partition function t n introduced by Stanley 8 9 . We shall give a combinatorial interpretation of t n in terms of hook lengths and shall prove that t n and the partition function p n have the same parity. Moreover we compute the generating function for p n t n . We shall adopt the common notation on partitions in Andrews 1 or Andrews and Eriksson 3 . A partition A A1 A2 A3 . Ar of a nonnegative integer n is a nonincreasing sequence of nonnegative integers such that the sum of the components Ai equals n. A part is meant to be a positive component and the number of parts of A is called the length denoted l A . The conjugate partition of A is defined by A A1 A2 . At 1 2 t where Ai 1 i t t l A is the number of parts in A1 A2 . Ar which are greater than or equal to i. The number of odd parts in A A1 A2 . Ar is denoted by O A . For q 1 the q-shifted factorial is defined by a q n 1 a 1 aq 1 aqn-1 n 1 and a qW 1 a 1 aq 1 aq2 THE ELECTRONIC JOURNAL OF COMBINATORICS 17 2010 N31 1 see Gasper and Rahman 5 . Stanley 8 9 introduced the partition function t n as the .

TÀI LIỆU LIÊN QUAN
32    57    0
45    42    0
6    65    0
4    53    0
6    55    0
6    52    0
6    45    0
5    59    0
7    58    0
6    64    0
TÀI LIỆU XEM NHIỀU
13    32487    1651
3    19360    204
25    18662    3688
20    16760    1476
16    15840    2496
14    14335    2540
37    13044    2802
1    11351    401
3    10970    211
23    10564    384
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
9    26    2    05-07-2022
3    11    1    05-07-2022
60    27    3    05-07-2022
10    27    1    05-07-2022
189    13    1    05-07-2022
14    18    1    05-07-2022
16    14    1    05-07-2022
82    7    1    05-07-2022
15    29    2    05-07-2022
53    10    1    05-07-2022
125    80    1    05-07-2022
51    15    1    05-07-2022
234    19    1    05-07-2022
8    2    1    05-07-2022
8    30    2    05-07-2022
74    28    1    05-07-2022
35    15    1    05-07-2022
19    17    1    05-07-2022
104    12    1    05-07-2022
14    17    1    05-07-2022
TÀI LIỆU HOT
3    19360    204
13    32487    1651
3    1498    75
580    3632    345
584    1962    81
62    4387    1
171    3985    621
2    1744    72
51    2475    150
53    3342    175
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.