Hệ thống này có thể được giải quyết bằng cách áp dụng phương trình bước-kích thước khác biệt giữa các biến tích hợp ode45 như được chỉ ra trong các chức năng sau đây: chức năng [t, x] = strdynrk (t, x0, v0, m, c, k, functim)% [t, x] = strdynrk (t, x0, v0, m, c, k, functim) toàn cầu Mi CKF n n1 n2 Mi = inv (m); C = c; K = k; F = functim; | INITIAL TEMPERATURE DISTRIBUTION . -1 -1 y axis y x axis Figure Initial Temperature Computer Formulation A computer program was written to analyze the time dependent temperature field. The program specifies general initial temperature and boundary temperature. The series solution is evaluated on a polar coordinate grid and an animation of the temperature variation from initial to steady state is shown. The program modules include 1 heatcyln which calls the computational modules and plots results 2 besjtabl returns Bessel function roots used in the series solution 3 tempinit specifies the initial temperature field 4 tempstdy computes the steady state solution 5 tempdif computes the difference in the initial and the final temperature fields 6 foubesco evaluates coefficients in the Fourier-Bessel series and 7 tempsum sums the Fourier-Bessel series for a vector of time values. Figures through show the initial final and two intermediate temperature states. The program animates the temperature history so the transition from initial to steady-state can be visualized. 2003 by CRC Press LLC temperature temperature Temperature at time 0 y axis x axis Figure Temperature at t -1 -1 Temperature at time 0 y axis x axis Figure Temperature at t -1 -1 2003 by CRC Press LLC temperature 1 0 1 STEADY STATE TEMPERATURE DISTRIBUTION y axis -1 -1 x axis 1 Figure Steady State Temperature 2003 by CRC Press .