Báo cáo toán học: "averages: Remarks on a paper by Stanley"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Department of Mathematic dành cho các bạn yêu thích môn toán học đề tài: averages: Remarks on a paper by Stanley. | Plancherel averages Remarks on a paper by Stanley Grigori Olshanski Institute for Information Transmission Problems Bolshoy Karetny 19 Moscow 127994 GSP-4 Russia and Independent University of Moscow Russia olsh2007@ Submitted Oct 1 2009 Accepted Mar 10 2010 Published Mar 15 2010 Mathematics Subject Classification 05E05 Abstract Let Mn stand for the Plancherel measure on Yn the set of Young diagrams with n boxes. A recent result of R. P. Stanley arXiv says that for certain functions G defined on the set Y of all Young diagrams the average of G with respect to Mn depends on n polynomially. We propose two other proofs of this result together with a generalization to the Jack deformation of the Plancherel measure. 1 Introduction Let Y denote the set of all integer partitions which we identify with Young diagrams. For A G Y denote by A the number of boxes in A and by dim A the number of standard tableaux of shape A. Let also c1 A . C A A be the contents of the boxes of A written in an arbitrary order recall that the content of a box is the difference j i between its column number j and row number i . For each n 1 2 . denote by Yn c Y the finite set of diagrams with n boxes. The well-known Plancherel measure on Yn assigns weight dim A 2 n to a diagram A G Yn. This is a probability measure. Given a function F on the set Y of all Young diagrams let us define the nth Plancherel average of F as F n Ẹ M F A . AeYn Supported by a grant from the Utrecht University by the RFBR grant 08-01-00110 and by the project SFB 701 Bielefeld University . THE ELECTRONIC JOURNAL OF COMBINATORICS 17 2010 R43 1 In the recent paper 17 R. P. Stanley proves among other things the following result 17 Theorem Theorem . Let xi x2 . be an arbitrary symmetric function and set Gv A C1 A . C A A 0 0 . A G Y. Then G n is a polynomial function in n. The aim of the present note is to propose two other proofs of this result and a generalization which is related to the Jack

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.