Báo cáo toán học: "How frequently is a system of 2-linear Boolean equations solvable"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Department of Mathematic dành cho các bạn yêu thích môn toán học đề tài: How frequently is a system of 2-linear Boolean equations solvable? | How frequently is a system of 2-linear Boolean equations solvable Boris Pittel and Ji-A Yeum Ohio State University Columbus Ohio USA bgp@ yeum@ Submitted Sep 7 2009 Accepted Jun 19 2010 Published Jun 29 2010 Mathematics Subject Classifications 05C80 05C30 34E05 60C05 Abstract We consider a random system of equations xi Xj b i j mod 2 xu E 0 1 b u v b v u E 0 1 with the pairs i j from E a symmetric subset of n X n . E is chosen uniformly at random among all such subsets of a given cardinality m alternatively i j E E with a given probability p independently of all other pairs. Also given E Pr be 0 Pr be 1 for each e E E independently of all other be . It is well known that as m passes through n 2 p passes through 1 n resp. the underlying random graph G n edges m G n Pr edge p resp. undergoes a rapid transition from essentially a forest of many small trees to a graph with one large multicyclic component in a sea of small tree components. We should expect then that the solvability probability decreases precipitously in the vicinity of m n 2 p 1 n and indeed this probability is of order 1 2m n 1 4 for m n 2 1 pn 1 4 for p 1 n resp. . We show that in a near-critical phase m n 2 1 An-1 3 p 1 An-1 3 n resp. A o n1 12 the system is solvable with probability asymptotic to c A n-1 12 for some explicit function c A 0. Mike Molloy noticed that the Boolean system with be 1 is solvable iff the underlying graph is 2-colorable and asked whether this connection might be used to determine an order of probability of 2-colorability in the near-critical case. We answer Molloy s question affirmatively and show that for A o n1 12 the probability of 2-colorability is 2-1 4e1 8c A n-1 12 and asymptotic to 2-1 4e1 8c A n-1 12 at a critical phase A O 1 and for A TO. 1 Introduction A system of 2-linear equations over GF 2 with n Boolean variables x1 . xn E 0 1 is Xi Xj bij mod 2 bij bj i E 0 1 i j . Pittel s research supported in part by NSF Grants .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.