là để mô hình, quy mô, các tông hoặc soạn thảo Mylar ® và xem các chuyển động trực tiếp. Các công cụ khác có sẵn trong các hình thức của các chương trình máy tính như FOURBAR, FIVEBAR, SIXBAR, thanh trượt, DYNACAM, động cơ, và MATRIX (bao gồm tất cả với văn bản này), một số trong đó làm tổng hợp, nhưng chủ yếu là các công cụ phân tích. | J 70 DESIGN OF MACHINERY CHAPTER 4 a Extended FIGURE 4-15 Extreme transmission angles in the Grashof fourbar linkage a link 2 Z link3 C link4 d link 1 For one extreme transmission angle the cosine law gives b2 c2- d a 2 Pl arccos ----------- and for the other extreme transmission angle p2 arccos 2 c2 - J-a 2 2bc For a Grashof double-rocker linkage the transmission angle can vary from 0 to 90 degrees because the coupler can make a full revolution with respect to the other links. For a non-Grashof triple-rocker linkage the transmission angle will be zero degrees in the toggle positions which occur when the output rocker c and the coupler b are colinear as shown in Figure 4-16a. In the other toggle positions when input rocker a and coupler b are colinear Figure 4-16b the transmission angle can be calculated from the cosine law as when V 0 u arccos a b 2 c2 -d2 2c a b This is not the smallest value that the transmission angle p can have in a triple-rocker as that will obviously be zero. Of course when analyzing any linkage the transmis- POSITION ANALYSIS 171 b Toggle positions for links a and b a Toggle positions for links b and c FIGURE 4-16 Non-Grashof triple-rocker linkages in toggle sion angles can easily be computed and plotted for all positions using equation . Programs Fourbar Fivebar and SlXBAR do this. The student should investigate the variation in transmission angle for the example linkages in those programs. Disk file can be opened in program Fourbar to observe that linkage in motion. TOGGLE POSITIONS The input link angles which correspond to the toggle positions stationary configurations of the non-Grashof triple-rocker can be calculated by the following method using trigonometry. Figure 4-17 shows a non-Grashof fourbar linkage in a general position. A construction line h has been drawn between points A and Ỡ4. This divides the quadrilateral loop into two triangles Ơ2AƠ4 and ABƠ4. Equation uses the cosine law to .