Báo cáo toán học: "Enumerating all Hamilton Cycles and Bounding the Number of Hamilton Cycles in 3-Regular Graphs"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Department of Mathematic dành cho các bạn yêu thích môn toán học đề tài: Enumerating all Hamilton Cycles and Bounding the Number of Hamilton Cycles in 3-Regular Graphs. | Enumerating all Hamilton Cycles and Bounding the Number of Hamilton Cycles in 3-Regular Graphs Heidi Gebauer Institute of Theoretical Computer Science ETH Zurich CH-8092 Zurich Switzerland gebauerh@ Submitted Sep 22 2009 Accepted Jun 10 2011 Published Jun 21 2011 Mathematics Subject Classifications 05C35 05C45 05C85 Abstract We describe an algorithm which enumerates all Hamilton cycles of a given 3-regular n-vertex graph in time O improving on Eppstein s previous bound. The resulting new upper bound of O for the maximum number of Hamilton cycles in 3-regular n-vertex graphs gets close to the best known lower bound of Q . Our method differs from Eppstein s in that he considers in each step a new graph and modifies it while we fix at the very beginning one Hamilton cycle C and then proceed around C successively producing partial Hamilton cycles. 1 Introduction The famous traveling salesman problem TSP is one of the most fundamental NP-complete graph problems 4 . For decades the best known algorithm for TSP was the dynamic programming algorithm by Held and Karp 6 which runs in time O 2n with n denoting the number of vertices of the given graph. This was also the strongest known upper bound for the subproblem of deciding whether a given graph contains a Hamilton cycle. In a recent breakthrough Bjorklund 2 gave a Monte Carlo algorithm for detecting whether a given graph contains a Hamilton cycle or not which runs in time n with false positives and false negatives occurring with probability exponentially small in n. We let poly n denote a polynomial factor in n. For bipartite graphs this algorithm even runs in time 22 poly n . Despite this major development it is still open whether the traveling salesman problem in its general form can be solved in time O 9 . Therefore it is of interest to consider some restricted problem classes which - while still NP-complete - might be treated faster. An extended abstract appeared in

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.