Stewart - Calculus - Early Transcendentals 6e HQ (Thomson, 2008) Episode 4

Tham khảo tài liệu 'stewart - calculus - early transcendentals 6e hq (thomson, 2008) episode 4', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 274 Illi CHAPTER 4 APPLICATIONsOF DIFFERENTIATION We have shown that f8fC 0 and also that f8fC 0. Since both of these inequalities must be true the only possibility is that Ặc 0. We have proved Fermat s Theorem for the case of a local maximum. The case of a local minimum can be proved in a similar manner or we could use Exercise 76 to deduce it from the case we have just proved see Exercise 77 . The following examples caution US against reading too much into Fermat s Theorem. We can t expect to locate extreme values simply by setting f8ịx 0 and solving for X. FIGURE 9 If f _r A 3 then f 0 0 but f has no maximum or minimum. EXAMPLE 5 If x X3 then f8fX 3x2 so 0 0. But f has no maximum or minimum at 0 as you can see from its graph in Figure 9. Or observe that X3 0 for X 0 but X31 0 for X 1 0. The fact that 0 0 simply means that the curve y X3 has a horizontal tangent at 0 0 . Instead of having a maximum or minimum at 0 0 the curve crosses its horizontal tangent there. EXAMPLE 6 The function x IXI has its local and absolute minimum value at 0 but that value can t be found by setting Ặx 0 because as was shown in Example 5 in Section Ặ0 does not exist. See Figure 10. FIGURE 10 If f x IA . then f 0 0 is a minimum value but f 0 does not exist. WARNING Examples 5 and 6 show that we must be careful when using Fermat s Theorem. Example 5 demonstrates that even when Ặc 0 there need not be a maximum or minimum at c. In other words the converse of Fermat s Theorem is false in general. Furthermore there may be an extreme value even when Ặc does not exist as in Example 6 . Fermat s Theorem does suggest that we should at least start looking for extreme values of at the numbers c where Ặc 0 or where Ặc does not exist. Such numbers are given a special name. 6 DEFINITION A critical number of a function is a number c in the domain of such that either Ặc 0 or Ặc does not exist. Figurd IshowsagraphDfthefunctioi in Example. It supporteuranswebecause therdsahorizontdfengentvhenv .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.