Stewart - Calculus - Early Transcendentals 6e HQ (Thomson, 2008) Episode 6

Tham khảo tài liệu 'stewart - calculus - early transcendentals 6e hq (thomson, 2008) episode 6', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 474 CHAPTER 7 TECHNIQUES OF INTEGRATION this equation f X 5 2 1 J X 2 X - 2dX - J u I - tttJ dx 2 In IX - 11 - In IX 2 I C To see how the method of partial fractions works in general let s consider a rational function .XX _ P x f x Q x where P and Q are polynomials. It s possible to express f as a sum of simpler fractions provided that the degree of P is less than the degree of Q. Such a rational function is called proper. Recall that if P x anXn a -1Xn 1 01X ao where an 0 then the degree of P is n and we write deg P n. If f is improper that is deg P deg Q then we must take the preliminary step of dividing Q into P by long division until a remainder R x is obtained such that deg R deg Q . The division statement is X _ P x R x f w Qt - sw QU where S and R are also polynomials. As the following example illustrates sometimes this preliminary step is all that is required. f X3 X VI EXAMPLE I Find I - dx. J X - 1 x x 2 x-1 p x .2 x x x x .2 x x 2x 2x 2 2 SOLUTION Since the degree of the numerator is greater than the degree of the denominator we first perform the long division. This enables us to write y XX dx y I X2 X 2 -I- - dx J X - 1 X - 1 X3 X 2 3 I 2 2x 2 ln IX 11 C The next step is to factor the denominator Q x as far as possible. It can be shown that any polynomial Q can be factored as a product of linear factors of the form ax b and irreducible quadratic factors of the form ax2 bx c where b2 - 4ac 0 . For instance if Q x X4 - 16 we could factor it as QX X2 - 4 X2 4 X - 2 X 2 X2 4 The third step is to express the proper rational function R x Q x from Equation 1 as a sum of partial fractions of the form A Ax B ax by or ax2 bx c j SECTION INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS 475 A theorem in algebra guarantees that it is always possible to do this. We explain the details for the four cases that occur. CASE I The denominator Q x is a product of distinct linear factors. This means that we can write Q x fl1 x b1 a2x b2 akx bk where no factor

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.