Numerical_Methods for Nonlinear Variable Problems Episode 2

Tham khảo tài liệu 'numerical_methods for nonlinear variable problems episode 2', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Chapter II Application of the Finite Element Method to the Approximation of Some Second-Order EVI 1. Introduction In this chapter we consider some examples of EVI of the first and second kinds. These EVI are related to second-order partial differential operators for fourth-order problems see Glowinski 2 and . 2 3 . The physical interpretation and some properties of the solution are given. Finite element approximations of these EVI are considered and convergence results are proved. In some particular cases we also give error estimates. Some of the results in this chapter may be found in . 1 2 3 For the approximation of the EVI of the first kind by finite element methods we also refer the reader to Falk 1 Strang 1 Mosco and Strang 1 Ciarlet 1 2 3 and Brezzi Hager and Raviart 1 2 We also describe iterative methods for solving the corresponding approximate problems cf. Cea 1 2 and . 1 2 3 . 2. An Example of EVI of the First Kind The Obstacle Problem Notations All the properties of Sobolev spaces used in this chapter are proved in Lions 2 Necas 1 and Adams 1 . Usually we shall have Q a bounded domain in IR2 r ỔQ X x1 x2 a generic point of Q V _ d dxi 0 dx2 cm i space of m-times continuously differentiable real valued functions for which all the derivatives up to order m are continuous in Q Cq Q v 6 Cm Q I Supp r is a compact subset of Q En m DMM ii for I e Cra Q where 7 a2 a2 are non-negative integers a Xi a2 and Dx õ ôxỉ 0X22 28 II Application of the Finite Element Method IF 1 completion of Cm Q in the above norm Wq p Q completion of Co Q in the above norm Hm Q Wm 2 O . H 0 WT w Ỗ Q cgw . The continuous problem Let V -HẬ Q t e H 1 Q IV r trace of V on r 0 cf. Lions 2 and Necas 1 for a precise definition of the trace a u v I Vu Vr dx where du õv õu ÕV Vu-Vv L v V for f e V H-1 Q and V e V. Let T e n C Q and T r 0. Define K v 6 Hq Q v 1 . on Q . Then the obstacle problem is a particular Pj problem defined by Find u such that a u V u L v u .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.