Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 14

Tham khảo tài liệu 'proakis j. (2002) communication systems engineering - solutions manual (299s) episode 14', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Therefore C max II Y H Y X max h p 2p To find the optimum value of p that maximizes I X Y we set the derivative of C with respect to p equal to zero. Thus VC -y- 0 vp log2 p pp ln1 2 log2 1 p 1 p 1 2 2 log2 1 p log2 p 2 and therefore 1 p 1 p 1 log2 f 2 p 4 p 5 The capacity of the channel is C h Ẹ bits transmission 5 5 Problem The capacity of the product channel is given by C max I X1X2 Y1Y2 p xi X2 However I X1X2 Y1Y2 H Y1Y2 H Y1Y2IX1X2 H Y1Y2 H Y1 X1 H Y2IX2 H Y1 H Y2 H Y1 X1 H Y2IX2 I X1 Y1 I X2 Y2 and therefore C max I X1X2 Y1 Y2 p xi X2 max I Xi Y1 I X2 Y2 p xi X2 max I X1 Y1 max I X2 Y2 p xi p x2 C1 C2 The upper bound is achievable by choosing the input joint probability density p x1 x2 in such a way that p x1 X2 p x1 p x2 where jõ x1 p x2 are the input distributions that achieve the capacity of the first and second channel respectively. p y x Problem 1 Let X X1 X2 y Y1 Y2 and p y1lx1 if x EX1 p y2 x2 if x E X2 the conditional probability density function of y and X. We define a new random variable M taking the values 1 2 depending on the index i of X. Note that M is a function of X or Y. This 258 is because X1 C X2 0 and therefore knowing X we know the channel used for transmission. The capacity of the sum channel is C max I X Y max H Y - H Y X max H Y - H Y X M p x p x p x max H Y - p M 1 H Y X M 1 - p M 2 H Y X M 2 p x max H Y - XH Y1 X1 - 1 - X H Y2IX2 p x where X p M 1 . Also H Y H Y M H M H Y M H X XH Y1 1 - X H Y2 Substituting H Y in the previous expression for the channel capacity we obtain C max I X Y p x max H X XH Y1 1 - X H Y2 - XH Y1 X1 - 1 - X H Y2X2 p x max H X XI X1 Y1 1 - X I X2 Y2 p x Since p x is function of X p x1 and p x2 the maximization over p x can be substituted by a joint maximization over X p x1 and p x2 . Furthermore since X and 1 - X are nonnegative we let p x1 to maximize I X1 Y1 and p x2 to maximize I X2 Y2 . Thus C max H X XC1 1 - X C2 A To find the value of X that maximizes C we set the derivative of

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.