Engineering Matlab Problem Solving phần 6

Method: compute H and then C for a range of values of R, then find the minimum value of C and the corresponding values of R and H. To determine the range of R to investigate, make an approximation by assuming that H = R. Then from the tank volume: 2 5 Vtank = 500 = πR3 + πR3 = πR3 3 3 Solving for R: R= From Matlab: Rest = (300/pi)^(1/3) Rest = We will investigate R in the range to meters. Computational implementation: Matlab script to determine the minimum cost design: % % %. | Method compute H and then C for a range of values of R then find the minimum value of C and the corresponding values of R and H. To determine the range of R to investigate make an approximation by assuming that H R. Then from the tank volume Vtank 500 nR3 2 nR3 5 nR3 3 3 Solving for R From Matlab Rest 300 pi 1 3 Rest We will investigate R in the range to meters. Computational implementation Matlab script to determine the minimum cost design Tank design problem Compute H C as functions of R R 3 Generate trial radius values R H 500. pi R. 2 - 2 R 3 Height H C 300 2 pi R. H 400 2 pi R. 2 Cost Plot cost vs radius plot R C title Tank Design . xlabel Radius R m . ylabel Cost C Dollars grid Compute and display minimum cost corresponding H R Cmin kmin min C disp Minimum cost dollars disp Cmin disp Radius R for minimum cost m disp R kmin disp Height H for minimum cost m disp H kmin 139 Running the script Minimum cost dollars 004 Radius R for minimum cost m Height H for minimum cost m Note that the radius corresponding to minimum cost Rmin is close to the approximate value Rest that we computed to assist in the selection of a range of R to investigate. The plot of cost C versus radius R is shown in Figure . Figure Tank design problem cost versus radius Sums and Products If x is a vector with N elements denoted x n n 1 2 . N then The sum y is the scalar N y x n x 1 x 2 x N n 1 140 The product y is the scalar N y n x n x 1 x 2 x N n 1 The cumulative sum y is the vector having elements y k k 1 2 . N k y k yy x n x 1 x 2 --- x k n 1 The cumulative product y is the vector having elements y k k 1 2 . N k y k n x n x 1 x 2 x k n 1 If X is a matrix with M rows and N columns with elements denoted x m n m 1 2 . M n 1 2 . N then The column sum y is the vector having elements y n n 1 2 . N M y n yz x m n x 1 n x 2 n x M n m 1 The column product y is the vector having elements y n n 1 2 . N M y n x m n x 1 n x 2 n x

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
24    19    1    27-11-2024
187    25    1    27-11-2024
15    20    4    27-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.