Báo cáo sinh học: "A phylogenetic generalized hidden Markov model for predicting alternatively spliced exons"

Tuyển tập các báo cáo nghiên cứu về sinh học được đăng trên tạp chí y học Molecular Biology cung cấp cho các bạn kiến thức về ngành sinh học đề tài: A phylogenetic generalized hidden Markov model for predicting alternatively spliced exons. | Algorithms for Molecular Biology BioMed Central Research A phylogenetic generalized hidden Markov model for predicting alternatively spliced exons Jonathan E Allen 1 2 and Steven L Salzberg1 3 Open Access Address 1Center for Bioinformatics and Computational Biology University of Maryland Institute for Advanced Computer Studies University of Maryland College Park MD 20742 USA 2Department of Computer Science Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA and 3Department of Computer Science University of Maryland College Park MD 20742 USA Email Jonathan E Allen - jeallen@ Steven L Salzberg - salzberg@ Corresponding author Published 25 August 2006 Received 24 April 2006 Algorithms for Molecular Biology 2006 1 14 doi 1748-7188-1-14 Accepted 25 August 2006 This article is available from http content 1 1 14 2006 Allen and Salzberg licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License http licenses by which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. Abstract Background An important challenge in eukaryotic gene prediction is accurate identification of alternatively spliced exons. Functional transcripts can go undetected in gene expression studies when alternative splicing only occurs under specific biological conditions. Non-expression based computational methods support identification of rarely expressed transcripts. Results A non-expression based statistical method is presented to annotate alternatively spliced exons using a single genome sequence and evidence from cross-species sequence conservation. The computational method is implemented in the program ExAlt and an analysis of prediction accuracy is given for Drosophila melanogaster. Conclusion ExAlt identifies the structure of most alternatively spliced exons in the test set

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.