MATHEMATICAL METHOD IN SCIENCE AND ENGINEERING Episode 11

Tham khảo tài liệu 'mathematical method in science and engineering episode 11', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | COMPLEX TECHNIQUES IN TAKING SOME DEFINITE INTEGRALS 353 dtì o a cos 0 Using Equations and we can write this integral as 1 dz 2ĩ 2ị i z2 2az l The denominator can be factorized as z - a z - Ị3 where a fl a2 1 2 3 a a2 l 5 . For a 1 we have a 1 and 3 1 thus only the root z a is present inside the unit circle. We can now use the Cauchy integral theorem to find I 2i 2tt a 3 2tt fl2 - 1 Example . Complex contour integral technique We now consider the integral 1 ỉ21ĩ Z -L sin2i0d0. 2tt Jo We can use Equations and to write z as a contour integral over the unit circle as r -1 1 H f dz l 2i 2 w z V zj We can now evaluate this integral by using the residue theorem as 354 COMPLEX INTEGRALS AND SERIES Using the binomial formula we can write 1 1 2 _1A 21 1V w z 7g 2TT Ei 2 4 where the residue we need is the coefficient of the 1 z term. This can be easily found as -l - and the result of the definite integral I becomes I - . 22i Z 2 Fig. Contour for the type II integrals II. Integrals of the type I dxR x where R x is a rational function of the form _ a0 ai 1 H-------1- anxn R x --------- - -------- ---- bo biX b2x2 H-------F bmxm a With no singular points on the real axis b l-R z goes to zero at least as in the limit as zI oo . Under these conditions I has the same value with the complex contour integral I ỷ R z dz COMPLEX TECHNIQUES IN TAKING SOME DEFINITE INTEGRALS 355 Fig. Contour for Example where c is a semicircle in the upper half of the z-plane considered in the limit as the radius goes to infinity Fig. . Proof is fairly straightforward if we write I as I jj R z dz ỉ R x dx ị R z dz Jc J oo J and note that the integral over the semicircle vanishes in the limit as the radius goes to infinity. We can now evaluate I using the residue theorem. Example . Complex contour integral technique Let US evaluate the integral Z dx . 13103 Since the conditions

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.