Introduction to Continuum Mechanics 3 Episode 8

Tham khảo tài liệu 'introduction to continuum mechanics 3 episode 8', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 266 Torsion of a Noncircular Cylinder 2 Fig. Torsion of a Noncircular Cylinder For cross-sections other than circular the simple displacement field of Section will not satisfy the tractionless lateral surface boundary condition see Example . We will show that in order to satisfy this boundary condition the cross-sections will not remain plane. We begin by assuming a displacement field that still rotates each cross-section by a small angle Ớ but in addition there may be a displacement in the axial direction. This warping of the cross-sectional plane will be defined by 1 p x2 3 . Our displacement field now has the form W1 ip x2 - 3 W2 -X3Ớ X 3 2ớ 1 The associated nonzero strains and stresses are given by r12 T21 2 i i2 - x3ớ H í5-14-2 dr2 713 T31 2 4 E13 n x2 e n ƠX3 The second and third equilibrium equations are still satisfied if Ỡ constant. However the first equilibrium equation requires that ểV ỀỊ. A dxị dxị Therefore the displacement field of Eq. will generate a possible state of stress if p satisfies Eq. . Now we compute the traction on the lateral surface. Since the bar is The Elastic Solid 267 cylindrical the unit normal to the lateral surface has the form n 2e2 3e3 and the associated surface traction is given by t Tn ỊẰ Ở - 2x3 3 2 z d p rr 2 dx2 z dcp kn3 ei ft0 -n2x3 n3x2 4 V -n e1 i We require that the lateral surface be traction-free . t 0 so that on the boundary the function p must satisfy the condition - v7- _ - Vự -n ớ 2 3- 3 2 Equations and define a well-known boundary-value problem which is known to admit an exact solution for the function p. Here we will only consider the torsion of an elliptic cross-section by demonstrating that p 1x2X3 gives the correct solution. Taking A as a constant this choice of p obviously satisfy the equilibrium equation Eq. . To check the boundary condition we begin by defining the elliptic boundary by the .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
24    19    1    28-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.