# Data Structures and Algorithms in Java 4th phần 10

## Hình 9,8: Ví dụ về một tìm kiếm nhị phân để thực hiện hoạt động tìm kiếm (22), trong một dictio BREW để giúp với các phím số nguyên, thực hiện với một danh sách mảng đã ra lệnh. Để đơn giản, chúng tôi cho thấy các phím được lưu trữ trong từ điển nhưng không phải là toàn bộ mục. | As with undirected graphs we can explore a digraph in a systematic way with methods akin to the depth-first search DFS and breadth-first search BFS algorithms defined previously for undirected graphs Sections and . Such explorations can be used for example to answer reachability questions. The directed depth-first search and breadth-first search methods we develop in this section for performing such explorations are very similar to their undirected counterparts. In fact the only real difference is that the directed depth-first search and breadth-first search methods only traverse edges according to their respective directions. The directed version of DFS starting at a vertex v can be described by the recursive algorithm in Code Fragment . See Figure . Code Fragment The Directed DFS algorithm. Algorithm DirectédDFS ỵ i Mark vertex vas visited. for each outgoing edge v. H of V do if vertex ir has not been visited then Recursively call Directed DFS mộ. Figure An example of a DFS in a digraph a intermediate step where for the first time an already visited vertex DFW is reached b the completed DFS. The tree edges are shown with solid blue lines the back edges are shown with dashed blue lines and the forward and cross edges are shown with dashed black lines. The order in which the vertices are visited is indicated by a label next to each vertex. The edge ORD DFW is a back edge but DFW ORD is a forward edge. Edge BOS SFO is a forward edge and SFO LAX is a cross edge. 830 A DFS on a digraph G partitions the edges of G reachable from the starting vertex into tree edges or discovery edges which lead us to discover a new vertex and nontree edges which take us to a previously visited vertex. The tree edges form a tree rooted at the starting vertex called the depth-first search tree and there are three kinds of nontree edges back edges which connect a vertex to an ancestor in the DFS tree forward edges which connect a vertex to a descendent in

TÀI LIỆU LIÊN QUAN
50    367    13
27    238    5
136    430    15
5    172    0
132    268    8
2    205    0
14    178    0
44    252    0
5    207    1
447    239    4
TÀI LIỆU XEM NHIỀU
13    40643    2392
3    24767    248
25    24217    4265
16    19862    2838
20    19365    1541
1    19117    612
14    19062    2965
37    15988    2956
3    15685    325
1    14356    131
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
123    347    30    19-04-2024
139    245    4    19-04-2024
31    106    3    19-04-2024
24    362    17    19-04-2024
5    55    1    19-04-2024
125    71    4    19-04-2024
7    70    2    19-04-2024
127    60    1    19-04-2024
111    162    1    19-04-2024
3    80    1    19-04-2024
9    70    1    19-04-2024
140    339    2    19-04-2024
8    128    1    19-04-2024
25    90    5    19-04-2024
55    61    2    19-04-2024
8    64    1    19-04-2024
5    151    1    19-04-2024
2    194    11    19-04-2024
10    62    1    19-04-2024
9    61    1    19-04-2024
TÀI LIỆU HOT
3    24767    248
13    40643    2392
3    2705    81
580    4975    363
584    3272    100
62    6566    1
171    5613    717
2    3052    78
51    4376    200
53    4658    187
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.