Tuyển tập các báo cáo nghiên cứu về sinh học được đăng trên tạp chí sinh học Journal of Biology đề tài: Solving animal model equations through an approximate incomplete Cholesky decomposition | ÍMĩígrt a 193 Genet Sei Evol 1992 24 193-209 Elsevier INRA Original article Solving animal model equations through an approximate incomplete Cholesky decomposition V Ducrocq Institut National de la Recherche Agronomique Station de Génétique Quantitative et Appliquée F- 78352 Jouy-en-Josas Cedex France Received 5 September 1991 accepted 3 March 1992 Summary - A general strategy is described for the design of more efficient algorithms to solve the large linear systems Bs r arising in individual animal model evaluations. This strategy like Gauss-Seidel iteration belongs to the family of splitting methods based on the decomposition B B B - B but in contrast to other methods it tries to take maximum advantage of the known sparsity structure of the mixed model coefficient matrix B is chosen to be an approximate incomplete Cholesky factor of B. The resulting procedure requires the solution of 2 triangular systems at each iteration and 2 readings of the data and pedigree file. This approach was applied to an animal model evaluation on 15 type traits and milking ease score from the French Holstein Association with 955 288 animals and 4 fixed effects including group effect for animals with unknown parents. Its convergence was compared with a standard iterative procedure. genetic evaluation animal model computing algorithm I type trait Resume Resolution des equations du modèle animal à 1 aide d une decomposition de Cholesky incomplete et approchée. Une strategic générale est décrite pour I obtention d algorithmes plus efficaces dans le but de résoudre les grands systèmes linéaires Bs r caractéristiques des evaluations de type modèle animal . Cette strategic comme 1 itération de Gauss-Seidel appartient à lafamille des méthodes d éclatement basées sur la decomposition B B B B mais contraÁrement aux autres methodes elle tente de mettre à profit autant que possible la structure creuse connue de la matrice des coefficients des equations du modèle mixte B est prise égale à une .