Báo cáo sinh học: "Summary - An approach for computing the expected genetic gain and the improvement"

Tuyển tập các báo cáo nghiên cứu về sinh học được đăng trên tạp chí sinh học Journal of Biology đề tài: Summary - An approach for computing the expected genetic gain and the improvement | Genet Sei Evol 1993 25 75-82 Elsevier INRA 75 Original article Prediction of annual genetic gain and improvement lag between populations JM Eisen INRA Station d Amelioration Génétique des Animaux BP 27 31326 Castanet Tolosan France Received 4 December 1991 accepted 18 November 1992 Summary - An approach for computing the expected genetic gain and the improvement lag between subpopulations based on matrix algebra is proposed. This is a generalization of the classical Rendel and Robertson 1950 formula whose main feature is a comparison of successive generation mean values. A simple example is given. selection response genetic gain gene flow Résumé - Prediction du progrès génétique annuel et du décalage génétique entre sous-populations. Une approche du calcul de 1 espérance du progrès génétique et du décalage entre sous-populations basée sur 1 algèbre matricielle est proposée. Il s agit d une generalisation de la formule classique de Rendel et Robertson 1950 dont la carac-téristique principale est de comparer les valeurs moyennes des generations successives. Un exemple simple est donné. réponse à la selection gain génétique flux de genes INTRODUCTION The formula of Rendel and Robertson 1950 for estimating the annual genetic gain is well suited to closed homogeneous populations. It may be used directly when there is only one type of breeding animal per sex. In other cases such as progeny test designs where known and tested males are both reproducing the formula has to be adapted Lindhé 1968 . Bichard 1971 showed how to process a hierarchical population and how to estimate the improvement lag between subpopulations. These methods are based on comparisons between the mean additive genetic values of successive generations. More recently iterative methods Hill 1974 Eisen and Mocquot 1974 Eisen 1980 Ducrocq and Quaas 1988 have been developed in 76 JM Eisen order to take account of the year by year change of genetic values. They are well fitted for the description of .

Bấm vào đây để xem trước nội dung
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.