Tuyển tập các báo cáo nghiên cứu về y học được đăng trên tạp chí y học Wertheim cung cấp cho các bạn kiến thức về ngành y đề tài: Caenorhabditis elegans chromosome arms are anchored to the nuclear membrane via discontinuous association with LEM-2. | Ikegami et al. Genome Biology 2010 11 R120 http 2010 11 12 R120 Genome Biology RESEARCH Open Access Caenorhabditis elegans chromosome arms are anchored to the nuclear membrane via discontinuous association with LEM-2 Kohta Ikegami1 Thea A Egelhofer2 Susan Strome2 Jason D Lieb1 Abstract Background Although Caenorhabditis elegans was the first multicellular organism with a completely sequenced genome how this genome is arranged within the nucleus is not known. Results We determined the genomic regions associated with the nuclear transmembrane protein LEM-2 in mixed-stage C. elegans embryos via chromatin immunoprecipitation. Large regions of several megabases on the arms of each autosome were associated with LEM-2. The center of each autosome was mostly free of such interactions suggesting that they are largely looped out from the nuclear membrane. Only the left end of the X chromosome was associated with the nuclear membrane. At a finer scale the large membrane-associated domains consisted of smaller subdomains of LEM-2 associations. These subdomains were characterized by high repeat density low gene density high levels of H3K27 trimethylation and silent genes. The subdomains were punctuated by gaps harboring highly active genes. A chromosome arm translocated to a chromosome center retained its association with LEM-2 although there was a slight decrease in association near the fusion point. Conclusions Local DNA or chromatin properties are the main determinant of interaction with the nuclear membrane with position along the chromosome making a minor contribution. Genes in small gaps between LEM-2 associated regions tend to be highly expressed suggesting that these small gaps are especially amenable to highly efficient transcription. Although our data are derived from an amalgamation of cell types in mixed-stage embryos the results suggest a model for the spatial arrangement of C. elegans chromosomes within the nucleus. Background The nuclear .