Handbook of Industrial Automation - Richard L. Shell and Ernest L. Hall Part 8

Tham khảo tài liệu 'handbook of industrial automation - richard l. shell and ernest l. hall part 8', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Figure 6 A Petri net model. A modified version of incidence matrix A is formed as -1 0 1 -1 0 0 I 1 1 0 I 0 0 0 0 0 0 1 0 0 0 0 J -1 0 0 1 -1 0 0 I 0 0 10 0 0 -1 0 0 1 -1 0 I 0 0 1 I 0 -1 I 0 0 0 10 0 0 0 0 1 0 0 0 0 0 1 We will add rows to eliminate a nonzero element in each row of A. Specifically 1 adding the third row to the first row 2 the fourth row to the second row 3 adding the fourth fifth and sixth rows to the third row. Determine if mf 3 0 I 7 is reachable from initial marking mữ 0 3 l r. Solution 1. Check the rank of A r rank J 1. 2. Partition A as An 1 J12 1 21 -IO P andA22 1Ơ T. 3. Use Eq. 16 to determine Bp. Bp 1 0 -1 1 0 0 1 1 1 0 0 0 1 4. Check where Am mf m0 3 -3 0 r. 1 1 0 3 o 0 0 1 -3 0 0 According to Theorem 1 mf can be reachable from mQ. The solution to Eq. 9 may become more complicated when one includes the constraint that the elements of X must be nonnegative integers. In this case an efficient algorithm 9 for computing the invariant of Petri net is proposed. The basic idea of the method can be illustrated by getting the minimal set of P-invar-iants through the following example. Example 7. The incidence matrix of the Petri net in Fig. 6 is -1 1 0 1 0 -1 0 1 -1 -1 -1 0 0 0 0 1 0 1 0 -1 0 0 0 0 1 1 -1 0 0 1 0 -1 0 0 -1 0 1 -1 0 0 -1 0 0 1 1 0 -1 0 0 I 10 1 0 I 0 10 0 I 0 0 1 0 I 0 0 0 1 I 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 -1 I 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 -1 0 0 1 0 0 1 0 0 0 0 1 0 -1 0 1 0 0 0 1 0 0 -1 -1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 -1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 -1 0 1 0 0 0 1 0 0 -1 -1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 -1 1 0 0 0 0 0 1 The three P-invariants are Vi 10100 0 r V 2 0 1 0 1 0 0 7 . and x3 0 0 1 1 1 I 7. They are actually the first three rows of the modified identity matrix. This is because their associated three rows in the final version of modified A have all zero elements. Invariant Analysis of a Pure Petri Net The .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
272    23    1    01-12-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.