Machine Learning and Robot Perception - Bruno Apolloni et al (Eds) Part 8

Tham khảo tài liệu 'machine learning and robot perception - bruno apolloni et al (eds) part 8', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 170 G. Unal et al. The direction of motion of an object boundary B monitored through a small aperture A small with respect to the moving unit see Figure can not be determined uniquely known as the aperture problem . Experimentally it can be observed that when viewing the moving edge B through aperture A it is not possible to determine whether the edge has moved towards the direction c or direction d. The observation of the moving edge only allows for the detection and hence computation of the velocity component normal to the edge vector towards n in Figure with the tangential component remaining undetectable. Uniquely determining the velocity field hence requires more than a single measurement and it necessitates a combination stage using the local measurements 25 . This in turn means that computing the velocity field involves regularizing constraints such as its smoothness and other variants. Fig. . The aperture problem when viewing the moving edge B through aperture A it is not possible to determine whether the edge has moved towards the direction c or direction d Horn and Schunck in their pioneering work 26 combined the optical flow constraint with a global smoothness constraint on the velocity field to define an energy functional whose minimization arg min í VI V It 2 T2 Vu 2 Vu 2 Jx u v Q can be carried out by solving its gradient descent equations. A variation on this theme would adopt an L1 norm smoothness constraint in contrast to 5 Efficient Incorporation of Optical Flow 171 Horn-Schunck s L2 norm on the velocity components and was given in 27 . Lucas and Kanade in contrast to Horn and Schunck s regularization based on post-smoothing minimized a pre-smoothed optical constraint JW 2 x VI x t V It x t 2dx R where W x denotes a window function that gives more weight to constraints near the center of the neighborhood R 28 . Imposing the regularizing smoothness constraint on the velocity over the whole image leads to over-smoothed motion estimates at

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.