Elasticity Part 2

Tham khảo tài liệu 'elasticity part 2', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Sadd Elasticity Final Proof 3 00pm page 18 If f and c are scalar fields and u and v are vector fields several useful identities exist V fC rf C f W r2 fC r2f C f v2C 2rf rc r fu rf u f v u r X f u rf X u f r X u r u X v v r X u - u r X v r X rf 0 r-rf r2f r r X u 0 r X r X u r r u -r2u u X Vx u r u u u ru Each of these identities can be easily justified by using index notation from definition relations . Next consider some results from vector tensor integral calculus. We simply list some theorems that have later use in the development of elasticity theory. Divergence or Gauss Theorem Let S be a piecewise continuous surface bounding the region of space V. If a vector field u is continuous and has continuous first derivatives in V then B JJ u n dS V- u dV where n is the outer unit normal vector to surface S. This result is also true for tensors of any order that is B Us dS ---- k dV Stokes Theorem Let S be an open two-sided surface bounded by a piecewise continuous simple closed curve C. If u is continuous and has continuous first derivatives on S then j . u dr C JI r X u n dS where the positive sense for the line integral is for the region S to lie to the left as one traverses curve C and n is the unit normal vector to S. Again this result is also valid for tensors of arbitrary order and so j C JJs snr dS 18 FOUNDATIONS AND ELEMENTARY APPLICATIONS TLFeBOOK Sadd Elasticity Final Proof 3 00pm page 19 It can be shown that both divergence and Stokes theorems can be generalized so that the dot product in and or can be replaced with a cross product. Green s Theorem in the Plane Applying Stokes theorem to a planar domain S with the vector field selected as u f e1 ge2 gives the result K@x - @ dd Ld gdy Further special choices with either f 0 or g 0 imply IĨ fg - f fif .-i yr-dxdy gnxds .d x v fnyds JJs fx Jc JJs fy Jc Zero-Value Theorem .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.