Theory and Problems of Strength of Materials Part 11

Tham khảo tài liệu 'theory and problems of strength of materials part 11', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | CHAP. 11 STATICALLY INDETERMINATE ELASTIC BEAMS 295 y Fig. 11-10 and we must supplement these equations with additional relations stemming from beam deformations. The bending moment along the length ABC is conveniently written in terms of singularity functions dJT 2 Integrating R 2 where C is a constant of integration. As the first boundary condition we have when X 0 the slope dyldx 0. Substituting in Eq. 2 . we have 0--0 0-0 C for G o As the second boundary condition when X L dyldx 0. Substituting in Eq. 2 we find 0- z o 3 Next integrating Eq. 2 W C find Ma 2 2 3 Ely w 6 4 7 4 The third boundary condition is when X 0. y 0 so from Eq. 4 we have c2 0. The fourth boundary condition is when X L y 0 so from Eq. 4 we have MAL2 RAL . 0 - 4 5 2 o 24 The expressions for MA given in Eqs. 3 and 5 may now be equated to obtain a single equation containing RA as an unknown. Solving this equation we find wl 3- Ị Substituting this value in Eq. 3 we find MA 2. From statics we have s F - w Re 0 .-. Rc and t 5 2 Ma 2 - Me - h 0 .MC . The beam in Fig. 11-11 of flexural rigidity EỈ is clamped at A supported between knife edges at s and loaded by a vertical force p at the unsupported tip c. Determine the deflection at c. 296 STATICALLY INDETERMINATE ELASTIC BEAMS CHAP 11 Fig. 11-11 The reactions at A are the moment MA and shear force RA as shown in Fig. 11-11. From statics we have 3 ĨMA MAi - RB L -0 2 . P Rb ữ 2 ihese two equations contain the three unknowns MA RA and RB. Thus we must supplement these two statics equations with another equation arising from deformation of the beam. Using the x-y coordinate system shown the differential equation of the deformed beam in terms of singularity functions is -MaM - Rfí x J The first integration yields G 4 where C is a constant of integration. The first boundary condition is that when X 0. dy dx 0 hence from 4 C 0. The next integration yields .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.