Báo cáo toán học: "An Infinite Family of Graphs with the Same Ihara Zeta Function"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Department of Mathematic dành cho các bạn yêu thích môn toán học đề tài: An Infinite Family of Graphs with the Same Ihara Zeta Function. | An Infinite Family of Graphs with the Same Ihara Zeta Function Christopher Storm Department of Mathematics and Computer Science Adelphi University cstorm@ Submitted Aug 17 2009 Accepted May 25 2010 Published Jun 7 2010 Mathematics Subject Classification 05C38 Abstract In 2009 Cooper presented an infinite family of pairs of graphs which were conjectured to have the same Ihara zeta function. We give a proof of this result by using generating functions to establish a one-to-one correspondence between cycles of the same length without backtracking or tails in the graphs Cooper proposed. Our method is flexible enough that we are able to generalize Cooper s graphs and we demonstrate additional families of pairs of graphs which share the same zeta function. 1. Introduction In 2009 Cooper described an infinite family of non-isomorphic pairs of graphs which she conjectured had the same Ihara zeta function 2 . In this note we provide a proof of Cooper s conjecture. We do so by using the definition of the Ihara zeta function directly as opposed to using determinant expressions for the zeta function. We will use bivariate generating functions to establish a one-to-one degree preserving correspondence between the sets used to build the Ihara zeta function. We refer the reader to 8 for a reference on generating functions. In the remainder of this section we introduce the Ihara zeta function define Cooper s graphs and state our main result. In Section 2 we develop the necessary tools and provide a proof of our main result. We conclude that section with some remarks on generalizing the family of graphs which have the same Ihara zeta function. A graph X V E is a finite nonempty set V of vertices and a finite multiset E of unordered pairs of vertices called edges. We allow edges of the form u u called loops. We also allow an edge u v to be repeated more than once as an element of E and refer to this as a multiple edge. the electronic journal of combinatorics 17 2010 R82 1

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.