Đang chuẩn bị liên kết để tải về tài liệu:
Financial calculus Introduction to Financial Option Valuation_6

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tham khảo tài liệu 'financial calculus introduction to financial option valuation_6', tài chính - ngân hàng, tài chính doanh nghiệp phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 14 Implied volatility OUTLINE the need for implied volatility properties of option value as a function of Ơ bisection and Newton for computing the implied volatility volatility smiles and frowns 14.1 Motivation We now put the bisection method and Newton s method to work on the problem of computing the implied volatility. 14.2 Implied volatility The Black-Scholes call and put values depend on S E r T t and Ơ2. Of these five quantities only the asset volatility Ơ cannot be observed directly. How do we find a suitable value for Ơ One approach is to extract the volatility from the observed market data - given a quoted option value and knowing S t E r and T find the Ơ that leads to this value. Having found Ơ we may use the Black-Scholes formula to value other options on the same asset. A Ơ computed this way is known as an implied volatility. The name indicates that Ơ is implied by option value data in the market. A completely different way to get hold of Ơ is described in Chapter 20. We focus here on the case of extracting Ơ from a European call option quote. An analogous treatment can be given for a put or alternatively the put quote could be converted into a call quote via put-call parity 8.23 . 14.3 Option value as a function of volatility We assume that the parameters E r and T and the asset price S and time t are known. In practice we will typically be interested in the time-zero case t 0 131 132 Implied volatility and s 50. We thus treat the option value as a function of ơ only and for the rest of this chapter denote it by C ơ . Given a quoted value C our task is to find the implied volatility ơ that solves C ơ C . Computing the implied volatility requires the solution of a nonlinear equation and hence from Chapter 13 we may use the bisection method or Newton s method. We will find that it is possible to exploit the special form of the nonlinear equation arising in this context. Since volatility is non-negative only values ơ G 0 TO are of interest. Let us look at

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.