Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo hóa học: "Research Article Positive Solution to a Singular p-Laplacian BVP with Sign-Changing Nonlinearity "

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article Positive Solution to a Singular p-Laplacian BVP with Sign-Changing Nonlinearity | Hindawi Publishing Corporation Advances in Difference Equations Volume 2009 Article ID 623932 21 pages doi 10.1155 2009 623932 Research Article Positive Solution to a Singular p-Laplacian BVP with Sign-Changing Nonlinearity Involving Derivative on Time Scales You-Hui Su 1 Subei Li 1 and Can-Yun Huang2 1 School of Mathematics and Physics Xuzhou Institute of Technology Xuzhou Jiangsu 221008 China 2 Department of Applied Mathematics Lanzhou University of Technology Lanzhou 730050 China Correspondence should be addressed to You-Hui Su suyouhui@xzit.edu.cn Received 3 January 2009 Revised 4 March 2009 Accepted 24 March 2009 Recommended by Alberto Cabada Let T be a time scale such that 0 T e T. By using a monotone iterative method we present some existence criteria for positive solution of a multiple point general Dirichlet-Robin BVP on time scales with the singular sign-changing nonlinearity. These results are even new for the corresponding differential T R and difference equation T Z as well as in general time scales setting. As an application an example is given to illustrate the results. The interesting point here is that the sign-changing nonlinear term is involved with the first-order derivative explicitly and the singularity may occur at u 0 t 0 and t T. Copyright 2009 You-Hui Su et al. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. 1. Introduction Initiated by Hilger in his Ph.D. thesis 1 in 1988 the theory of time scales has been improved greatly ever since. In particular considerable works have been made in the existence problems of solutions of dynamic systems on time scales for details see 2-12 and the references therein. The reason for that lies in two aspects. On one hand the time scales approach not only unifies differential and difference equations but also solves other problems that are a mix .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.