Đang chuẩn bị liên kết để tải về tài liệu:
Đề tài " A proof of Kirillov’s conjecture "

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Let G = GLn (K) where K is either R or C and let P = Pn (K) be the subgroup of matrices in GLn (K) consisting of matrices whose last row is (0, 0, . . . , 0, 1). Let π be an irreducible unitary representation of G. Gelfand and Neumark [Gel-Neu] proved that if K = C and π is in the Gelfand-Neumark series of irreducible unitary representations of G then the restriction of π to P remains irreducible. Kirillov [Kir] conjectured that this should be true for all irreducible unitary representations π of GLn.

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.