Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Công Nghệ Thông Tin
Cơ sở dữ liệu
Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining
Đang chuẩn bị liên kết để tải về tài liệu:
Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining
Huy Tường
98
41
ppt
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Key motivations of data exploration include Helping to select the right tool for preprocessing or analysis Making use of humans’ abilities to recognize patterns People can recognize patterns not captured by data analysis tools Related to the area of Exploratory Data Analysis (EDA) Created by statistician John Tukey Seminal book is Exploratory Data Analysis by Tukey A nice online introduction can be found in Chapter 1 of the NIST Engineering Statistics Handbook http://www.itl.nist.gov/div898/handbook/index.htm. | Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar What is data exploration? Key motivations of data exploration include Helping to select the right tool for preprocessing or analysis Making use of humans’ abilities to recognize patterns People can recognize patterns not captured by data analysis tools Related to the area of Exploratory Data Analysis (EDA) Created by statistician John Tukey Seminal book is Exploratory Data Analysis by Tukey A nice online introduction can be found in Chapter 1 of the NIST Engineering Statistics Handbook http://www.itl.nist.gov/div898/handbook/index.htm A preliminary exploration of the data to better understand its characteristics. Techniques Used In Data Exploration In EDA, as originally defined by Tukey The focus was on visualization Clustering and anomaly detection were viewed as exploratory techniques In data mining, clustering and anomaly detection are major areas of interest, and not . | Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar What is data exploration? Key motivations of data exploration include Helping to select the right tool for preprocessing or analysis Making use of humans’ abilities to recognize patterns People can recognize patterns not captured by data analysis tools Related to the area of Exploratory Data Analysis (EDA) Created by statistician John Tukey Seminal book is Exploratory Data Analysis by Tukey A nice online introduction can be found in Chapter 1 of the NIST Engineering Statistics Handbook http://www.itl.nist.gov/div898/handbook/index.htm A preliminary exploration of the data to better understand its characteristics. Techniques Used In Data Exploration In EDA, as originally defined by Tukey The focus was on visualization Clustering and anomaly detection were viewed as exploratory techniques In data mining, clustering and anomaly detection are major areas of interest, and not thought of as just exploratory In our discussion of data exploration, we focus on Summary statistics Visualization Online Analytical Processing (OLAP) Iris Sample Data Set Many of the exploratory data techniques are illustrated with the Iris Plant data set. Can be obtained from the UCI Machine Learning Repository http://www.ics.uci.edu/~mlearn/MLRepository.html From the statistician Douglas Fisher Three flower types (classes): Setosa Virginica Versicolour Four (non-class) attributes Sepal width and length Petal width and length Virginica. Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office guide to plant species. Northeast National Technical Center, Chester, PA. Courtesy of USDA NRCS Wetland Science Institute. Summary Statistics Summary statistics are numbers that summarize properties of the data Summarized properties include frequency, location and spread Examples: location - mean spread - standard deviation Most summary statistics can be calculated in a single
TÀI LIỆU LIÊN QUAN
Ebook Data warehousing and data mining
Lecture Data mining: Lesson 18
Chapter 2: Data Mining
Lecture Data mining: Lesson 17
Lecture Data mining: Lesson 19
Lecture Data mining and analysis: Fundamental concepts and algorithms: Chapter 8 - Mohammed J. Zaki, Wagner Meira
Lecture Data mining and analysis: Fundamental concepts and algorithms: Chapter 10 - Mohammed J. Zaki, Wagner Meira
Lecture Data mining and analysis: Fundamental concepts and algorithms: Chapter 11 - Mohammed J. Zaki, Wagner Meira
Lecture Data mining and analysis: Fundamental concepts and algorithms: Chapter 8 - Mohammed J. Zaki, Wagner Meira
Lecture Data mining and analysis: Fundamental concepts and algorithms: Chapter 10 - Mohammed J. Zaki, Wagner Meira
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.