Đang chuẩn bị liên kết để tải về tài liệu:
Bài giảng môn Kinh tế lượng: Chương 6

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Chương 6 Đa cộng tuyến, cùng tìm hiểu chương này với những nội dung về: Bản chất của đa cộng tuyến, ước lượng trong trường hợp có đa cộng tuyến, hậu quả của đa cộng tuyến, cách phát hiện đa cộng tuyến. | I. Bản chất của đa cộng tuyến Đa cộng tuyến là tồn tại mối quan hệ tuyến tính giữa một số hoặc tất cả các biến độc lập trong mô hình. Xét hàm hồi qui k biến : Yi = 1+ 2X2i + + kXki + Ui - Nếu tồn tại các số 2, 3, , k không đồng thời bằng 0 sao cho : Chương 6 Đa cộng tuyến 2X2i + 3X3i + + kXki + a = 0 (a : hằng số) Thì giữa các biến độc lập xảy ra hiện tượng đa cộng tuyến hoàn hảo. - Nếu tồn tại các số 2, 3, , k không đồng thời bằng 0 sao cho : 2X2i + 3X3i + + kXki + Vi = 0 (Vi : sai số ngẫu nhiên) Thì giữa các biến độc lập xảy ra hiện tượng đa cộng tuyến không hoàn hảo. Ta có : X3i = 5X2i có hiện tượng cộng tuyến hoàn hảo giữa X2 và X3 và r23 =1 X4i = 5X2i + Vi có hiện tượng cộng tuyến không hoàn hảo giữa X2 và X3 , có thể tính được r24 = 0.9959. X2 10 15 18 24 30 X3 50 75 90 120 150 X4 52 75 97 129 152 Ví dụ : Yi = 1+ 2X2i+ 3X3i+ 4X4i + Ui Với số liệu của các biến độc lập : II. Ước lượng trong trường hợp có đa cộng tuyến 1.Trường hợp có đa cộng tuyến hoàn hảo Xét . | I. Bản chất của đa cộng tuyến Đa cộng tuyến là tồn tại mối quan hệ tuyến tính giữa một số hoặc tất cả các biến độc lập trong mô hình. Xét hàm hồi qui k biến : Yi = 1+ 2X2i + + kXki + Ui - Nếu tồn tại các số 2, 3, , k không đồng thời bằng 0 sao cho : Chương 6 Đa cộng tuyến 2X2i + 3X3i + + kXki + a = 0 (a : hằng số) Thì giữa các biến độc lập xảy ra hiện tượng đa cộng tuyến hoàn hảo. - Nếu tồn tại các số 2, 3, , k không đồng thời bằng 0 sao cho : 2X2i + 3X3i + + kXki + Vi = 0 (Vi : sai số ngẫu nhiên) Thì giữa các biến độc lập xảy ra hiện tượng đa cộng tuyến không hoàn hảo. Ta có : X3i = 5X2i có hiện tượng cộng tuyến hoàn hảo giữa X2 và X3 và r23 =1 X4i = 5X2i + Vi có hiện tượng cộng tuyến không hoàn hảo giữa X2 và X3 , có thể tính được r24 = 0.9959. X2 10 15 18 24 30 X3 50 75 90 120 150 X4 52 75 97 129 152 Ví dụ : Yi = 1+ 2X2i+ 3X3i+ 4X4i + Ui Với số liệu của các biến độc lập : II. Ước lượng trong trường hợp có đa cộng tuyến 1.Trường hợp có đa cộng tuyến hoàn hảo Xét mô hình :Yi = 1+ 2X2i+ 3X3i+ Ui (1) Giả sử : X3i = X2i x3i = x2i. Theo OLS: Tuy nhiên nếu thay X3i = X2i vào hàm hồi qui (1), ta được : Yi = 1+ 2X2i+ 3 X2i + Ui Hay Yi = 1+ ( 2+ 3) X2i + Ui (2) Ước lượng (2), ta có : Thay x3i = 2x2i vào công thức : Tương tự : Tóm lại, khi có đa cộng tuyến hoàn hảo thì không thể ước lượng được các hệ số trong mô hình mà chỉ có thể ước lượng được một tổ hợp tuyến tính của các hệ số đó. 2. Trường hợp có đa cộng tuyến không hoàn hảo Thực hiện tương tự như trong trường hợp có đa cộng tuyến hoàn hảo nhưng với X3i = X2i +Vi Vẫn có thể ước lượng được các hệ số trong mô hình. III. Hậu quả của đa cộng tuyến 1. Phương sai và hiệp phương sai của các ước lượng OLS lớn. 2. Khoảng tin cậy rộng hơn 3. Thống kê t nhỏ nên tăng khả năng các hệ số ước lượng không có ý nghĩa 4. R2 cao nhưng thống kê t nhỏ. 5. Dấu của các ước lượng có thể sai. 6. Các ước lượng OLS và sai số chuẩn của chúng trở nên rất nhạy với những thay đổi nhỏ trong dữ liệu. 7. Thêm vào hay

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.