Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Calculus and its applications: 2.2
Đang chuẩn bị liên kết để tải về tài liệu:
Calculus and its applications: 2.2
Chí Dũng
70
34
ppt
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
"Calculus and its applications: 2.2" - Using Second derivatives to find maximum and minimum values and sketch graphs have objective: find the relative extrema of a function using the second-derivative test, sketch the graph of a continuous function. | 2012 Pearson Education, Inc. All rights reserved Slide 2.2- Using Second Derivatives to Find Maximum and Minimum Values and Sketch Graphs OBJECTIVE Find the relative extrema of a function using the Second-Derivative Test. Sketch the graph of a continuous function. 2012 Pearson Education, Inc. All rights reserved Slide 2.2- DEFINITION: Suppose that f is a function whose derivative f exists at every point in an open interval I. Then f is concave up on I if f is concave down on I f is increasing over I. if f is decreasing over I. 2.2 Using Second Derivatives to Find Maximum and Minimum Values and Sketch Graphs 2012 Pearson Education, Inc. All rights reserved Slide 2.2- THEOREM 4: A Test for Concavity 1. If f (x) > 0 on an interval I, then the graph of f is concave up. ( f is increasing, so f is turning up on I.) 2. If f (x) Slide 2.2- THEOREM 5: The Second Derivative Test for Relative Extrema Suppose that f is differentiable for every x in an open interval (a, b) and that there is a critical value c in (a, b) for which f (c) = 0. Then: 1. f (c) is a relative minimum if f (c) > 0. 2. f (c) is a relative maximum if f (c) p. 216, the concluding sentence of Theorem 5 says “f(x)” instead of f(c). 2012 Pearson Education, Inc. All rights reserved Slide 2.2- Example 1: Graph the function f given by and find the relative extrema. 1st find f (x) and f (x). 2.2 Using Second Derivatives to Find Maximum and Minimum Values and Sketch Graphs 2012 Pearson Education, Inc. All rights reserved Slide 2.2- Example 1 | 2012 Pearson Education, Inc. All rights reserved Slide 2.2- Using Second Derivatives to Find Maximum and Minimum Values and Sketch Graphs OBJECTIVE Find the relative extrema of a function using the Second-Derivative Test. Sketch the graph of a continuous function. 2012 Pearson Education, Inc. All rights reserved Slide 2.2- DEFINITION: Suppose that f is a function whose derivative f exists at every point in an open interval I. Then f is concave up on I if f is concave down on I f is increasing over I. if f is decreasing over I. 2.2 Using Second Derivatives to Find Maximum and Minimum Values and Sketch Graphs 2012 Pearson Education, Inc. All rights reserved Slide 2.2- THEOREM 4: A Test for Concavity 1. If f (x) > 0 on an interval I, then the graph of f is concave up. ( f is increasing, so f is turning up on I.) 2. If f (x) < 0 on an interval I, then the graph of f is concave down. ( f is decreasing, so f is turning down on I.) 2.2 Using Second Derivatives to .
TÀI LIỆU LIÊN QUAN
Calculus and its applications: 1.1
Calculus and its applications: 1.2
Calculus and its applications: 1.3
Calculus and its applications: 1.4
Calculus and its applications: 1.5
Calculus and its applications: 1.6
Calculus and its applications: 1.7
Calculus and its applications: 1.8
Calculus and its applications: 2.1
Calculus and its applications: 2.2
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.