Đang chuẩn bị liên kết để tải về tài liệu:
Đề thi thử Đại học lần 1 môn Toán khối A năm 2014 - THPT Đức Thọ
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
"Đề thi thử Đại học lần 1 môn Toán khối A năm 2014" dưới đây được chia làm 2 phần: phần chung gồm 6 câu hỏi bài tập, phần riêng được chọn theo chương trình chuẩn hoặc chương trình nâng cao. Thời gian làm bài trong vòng 180 phút. Ngoài ra đề thi này còn kèm theo đáp án giúp các bạn dễ dàng kiểm tra so sánh kết quả được chính xác hơn. và thử sức mình với đề thi này nhé. | www.VNMATH.com TRƯỜNG THPT ĐỨC THỌ ĐỀ CHÍNH THỨC ĐỀ THI THỬ ĐẠI HỌC LẦN I, NĂM 2014 Môn: TOÁN; Khối A Thời gian làm bài: 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm). Cho hàm số: y = 2x -1 (1) x-2 a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). b) Cho đường thẳng d: y = - x + m và hai điểm M(3;4) và N(4;5). Tìm các giá trị của m để đường thẳng d cắt đồ thị hàm số (1) tại hai điểm phân biệt A, B sao cho 4 điểm A, B, M, N lập thành tứ giác lồi AMBN có diện tích bằng 2. sin x sin 2 x + 2sin x cos 2 x + sin x + cos x = 6 cos 2 x π sin( x + ) 4 1 1 2 .Câu 3 (1,0 điểm). Giải bất phương trình: + - x ³ 1 ( x Î R) . x+2 -x -1 3 Câu 2 (1,0 điểm). Giải phương trình 600. Tam giác ABC vuông tại B, · = 300 . G là trọng tâm của tam giác ABC. Hai mặt phẳng ACB (SGB) và (SGC) cùng vuông góc với mặt phẳng (ABC). Tính thể tích của hình chóp S.ABC theo a. ( x3 + 1) tan 2 x + x3 dx 1 + tan 2 x Câu 5 (1,0 điểm). Cho hình chóp S.ABC có SA=3a (với a>0); SA tạo với đáy (ABC) một góc bằng Câu 4 (1,0 điểm). Tính I = ò Câu 6 (1,0 điểm). Cho 3 số thực x, y , z thỏa mãn x3 + 8 y 3 + 27 z 3 - 18 xyz = 1 . Tìm giá trị nhỏ nhất của biểu thức: P = x 2 + 4 y 2 + 9 z 2 . II. PHẦN RIÊNG (3,0 điểm):Thí sinh chỉ được làm 1 trong 2 phần riêng (phần A hoặc phần B) A. Theo chương trình Chuẩn Câu 7.a (1,0 điểm). Trong mặt phẳng tọa độ Oxy cho đường tròn (C ) : x 2 + y 2 = 9 , đường thẳng D : y = x - 3 + 3 và điểm A(3, 0) . Gọi M là một điểm thay đổi trên (C) và B là điểm sao cho tứ giác ABMO là hình bình hành. Tìm toạ độ trọng tâm G của tam giác ABM, biết G thuộc D và G có tung độ dương Câu 8.a (1,0 điểm). Giải phương trình log 2 (4 x - 2 x+1 + 4) - log8 (2 x - 1)3 = 2 Câu 9.a (1,0 điểm). Từ các chữ số 0, 1, 2, 3, 4 lập các số chẵn có 4 chữ số đôi một khác nhau. Lấy ngẫu nhiên một số vừa lập.Tính xác suất để lấy được một số lớn hơn 2013. B. Theo chương trình Nâng cao Câu 7.b (1,0 điểm). Cho hình chử nhật ABCD có phương trình đường thẳng AD: .