Đang chuẩn bị liên kết để tải về tài liệu:
Lecture Introductory econometrics for finance – Chapter 6: Univariate time series modelling and forecasting

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

In this chapter, you will learn how to: Explain the defining characteristics of various types of stochastic processes, identify the appropriate time series model for a given data series, produce forecasts for ARMA and exponential smoothing models, evaluate the accuracy of predictions using various metrics, estimate time series models and produce forecasts from them in EViews. | Chapter 6 Univariate time series modelling and forecasting ‘Introductory Econometrics for Finance’ c Chris Brooks 2013 1 Univariate Time Series Models • Where we attempt to predict returns using only information contained in their past values. Some Notation and Concepts • A Strictly Stationary Process A strictly stationary process is one where P{yt1 ≤ b1 , . . . , ytn ≤ bn } = P{yt1 +m ≤ b1 , . . . , ytn +m ≤ bn } • A Weakly Stationary Process ‘Introductory Econometrics for Finance’ c Chris Brooks 2013 2 Univariate Time Series Models (Cont’d) If a series satisfies the next three equations, it is said to be weakly or covariance stationary (1) E (yt ) = µ t = 1, 2, . . . , ∞ (2) E (yt − µ)(yt − µ) = σ 2 < ∞ (3) E (yt1 − µ)(yt2 − µ) = γt2 −t1 ∀ t1 , t2 • So if the process is covariance stationary, all the variances are the same and all the covariances depend on the difference between t1 and t2 . The moments E (yt − E (yt ))(yt−s − E (yt−s )) = γs , s = 0, 1, 2, . . . are known as the covariance function. • The covariances, γs , are known as autocovariances. ‘Introductory Econometrics for Finance’ c Chris Brooks 2013 3 Univariate Time Series Models (Cont’d) • However, the value of the autocovariances depend on the units of measurement of yt . • It is thus more convenient to use the autocorrelations which are the autocovariances normalised by dividing by the variance: τs = γs , γ0 s = 0, 1, 2, . . . • If we plot τs against s=0,1,2,. then we obtain the autocorrelation function or correlogram. ‘Introductory Econometrics for Finance’ c Chris Brooks 2013 4 A White Noise Process • A white noise process is one with (virtually) no discernible structure. A definition of a white noise process is E (yt ) = µ var(yt ) = σ 2 γt−r = σ2 0 if t = r otherwise • Thus the autocorrelation function will be zero apart from a single peak of 1 at s=0. τs ∼ approx. N(0, 1/T ) where T = ˆ sample size • We can use this to do significance tests for the .

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.