Đang chuẩn bị liên kết để tải về tài liệu:
investigation on structural and ferroelectric properties of Bi3.25La0.75Ti3O12 thin films
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
In this work, the BLT thin films were fabricated on Pt/TiO2/SiO2/Si substrates by using a solution process, and then their features including crystal structure, surface morphology, and electrical properties were characterized by using X-ray diffraction system (XRD), scanning electron microscopy (SEM), and electrical measurement system (Radiant Precision LC 10), respectively. | Journal of Science and Technology 54 (1A) (2016) 80-87 INVESTIGATION ON STRUCTURAL AND FERROELECTRIC PROPERTIES OF Bi3.25La0.75Ti3O12 THIN FILMS Tran Van Dung1, Hoang Ha1, Hoang Thi Thanh Tam1, Vu Thi Dung1, Nguyen Van Dung1, Do Hong Minh1, Vu Thi Huyen Trang2, Nguyen Quang Hoa2, Bui Nguyen Quoc Trinh1, * 1 Faculty of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi 2 Faculty of Physics, VNU Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi * Email: trinhbnq@vnu.edu.vn Received: 1 September 2015; Accepted for publication: 26 October 2015 ABSTRACT Lanthanum doped bismuth titanate (Bi3.25La0.75Ti3O12 abbreviated as BLT) has been known as one of typical materials for Bi-layered perovskite structure which possess several unique properties such as good fatigue with metal electrode and stable remanent polarization, hence it has potential applications in ferroelectric random access memory. In this work, the BLT thin films were fabricated on Pt/TiO2/SiO2/Si substrates by using a solution process, and then their features including crystal structure, surface morphology, and electrical properties were characterized by using X-ray diffraction system (XRD), scanning electron microscopy (SEM), and electrical measurement system (Radiant Precision LC 10), respectively. The obtained results point out that the BLT thin film annealed at 725 oC is mostly optimum from a viewpoint of film quality and ferroelectricity. In particular, the optimum BLT thin film having a thickness of 200 nm does not contain any cracks on the sample surface, and the grain size is closed to 400 nm from SEM observation. XRD patterns imply that the BLT thin film had stoichiometric structure with preferred orientations of (117) and (006), when annealed at temperatures higher than 725 oC. In addition, we found the influence of La (0.75) dopping on c-axis-oriented growth