Đang chuẩn bị liên kết để tải về tài liệu:
Best constants in second-order Sobolev inequalities on compact Riemannian manifolds in the presence of symmetries

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Let (M,g) be a smooth compact 3 ≤ n-dimensional Riemannian manifold, and G a subgroup of the isometry group of (M,g). We establish the best constants in second-order for a Sobolev inequality when the functions are G-invariant. | Turk J Math 36 (2012) , 601 – 612. ¨ ITAK ˙ c TUB doi:10.3906/mat-0907-115 Best constants in second-order Sobolev inequalities on compact Riemannian manifolds in the presence of symmetries Mohammed Ali Abstract Let (M, g) be a smooth compact 3 ≤ n -dimensional Riemannian manifold, and G a subgroup of the isometry group of (M, g) . We establish the best constants in second-order for a Sobolev inequality when the functions are G -invariant. Key Words: Best constants, compact Riemannian manifolds, Sobolev inequalities, isometries 1. Introduction Let (M, g) be a compact 3 ≤ n-dimensional Riemannian manifold, and G a subgroup of the isometry group Is(M, g). Assume that l is the minimum orbit dimension of G , and V is the minimum of the volume of the l -dimensional orbits. If 1 0 , (Ω, Ψ) can be chosen such that: ij l (g ) − (δ ij ) ≤ ε, Γ ≤ ε , (i) ij and 1−ε≤ det(gij ) ≤ 1 + ε on Ω, for 1 ≤ i, j ≤ n, l Γij ≤ ε , ij (˜ g ) − (δ ij ) ≤ ε, (ii) and 1−ε ≤ det(˜ gij ) ≤ 1 + ε on Vx , for 1 ≤ i, j ≤ N, x where g˜ is the metric induced by g on OG . Furthermore, (1 − ε)(δij ) ≤ (gij ) ≤ (1 + ε)(δij ) as bilinear forms. (4) For any f ∈ FGi,p , f ◦ Ψ−1 depends only on U2 variables. In order to prove Theorem 2.1, it suffices to prove the following lemmas. Lemma 2.3 Let (M, g) be a compact 3 ≤ n-dimensional Riemannian manifold, and G a subgroup of the isometry group Is(M, g). Suppose that l is the minimum orbit dimension of G , and V is the minimum of the volume of the l -dimensional orbits. Assume that for any 1 0 , let B(x0 , δ) be a geodesic ball of radius δ and center x0 such that in normal coordinators of B(x0 , δ), the properties of Lemma 2.2 are verified. p For any f ∈ Cc∞ (Bδ ) and ε small enough, there exist two real numbers A, B with A 0 and Cα,δ = O (δ −p 2 p ∂ f dx + C α,δ Bδ p |f| dx (2.3) Bδ ), plus the inequalities Bδ 2 p ∂ f dx ≤ Cn,p | f|p .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.