Đang chuẩn bị liên kết để tải về tài liệu:
The p-stirling numbers

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

While the (common) value of the two determinants is symmetric in v and w, and in x and y, unlike the Jacobi-Trudi and N¨agelsbach-Kostka determinants, it is not symmetric in all four variables, much less in v, w, x, y, and z. The purpose of this article is to introduce p-Stirling numbers of the first and second kinds. | Turk J Math 24 (2000) , 379 – 399. ¨ ITAK ˙ c TUB The p-Stirling Numbers Russell Merris Dedicated to the memory of Henry C. Diehl. Abstract The purpose of this article is to introduce p-Stirling numbers of the first and second kinds. Key Words: Binomial coefficient; Character; General linear group; Partittion; Representation; Stirling number; Symmetric function. 1. Introduction Pronounced “m-choose-n”, C(m, n) is the number of n-element subsets of {1, 2, . . . , m}. Let Cm be the m-by-m matrix whose (i, j)-entry is C(i, j). Then, for example, 1 0 0 2 1 0 C5 = 3 3 1 4 6 4 5 10 10 0 0 0 0 0 0 . 1 0 5 1 −1 Because det(Cm ) = 1, not only is Cm invertible, but Cm is an integer matrix. Indeed, −1 can be among the many wonderful properties of binomial coefficients is the fact that Cm −1 is obtained from Cm by inserting a few well chosen minus signs: The (i, j) -entry of Cm (−1)i+j C(i, j). Thus AMS Numbers: Primary 05A05; Secondary, 15A69 379 MERRIS C5−1 1 0 −2 1 = 3 −3 −4 6 5 −10 0 0 0 0 1 0 −4 1 10 −5 0 0 0 . 0 1 One way to insert this “checkerboard array” of minus signs is by means of matrix multiplication: −1 Cm = Dm Cm Dm , (1) −1 = diag(−1, 1, −1, . . . , (−1)m ) is the m − by − m diagonal matrix of where Dm = Dm ∓1’s. The Stirling number of the second kind, S(m, n), is the number of ways to partition {1, 2, . . . , m} into a disjoint union of n nonempty subsets caled the parts of the partition. The 2-part partitions of {1, 2, 3, 4} are {1} ∪ {2, 3, 4}, {2} ∪ {1, 3, 4}, {1, 2} ∪ {3, 4}, {3} ∪ {1, 2, 4}, {1, 3} ∪ {2, 4}, {4} ∪ {1, 2, 3}, and {1, 4} ∪ {2, 3} Thus, S(4, 2) = 7. More colorfully, S(m, n) is the number of ways to distribute m distinguishable (labeled) cows among n identical (unlabeled) pastures, with each pasture containing at least one cow. So, S(m, m) = 1 = S(m, 1), m ≥ 1, and S(m, n) = 0 if m ≥ 1 > n or n > m. Moreover, S(m + 1, n) = S(m, n − 1) +

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.