Đang chuẩn bị liên kết để tải về tài liệu:
Q-modules

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

In this paper we characterize Q-modules and almost Q-modules. Next we estblish some equivalent conditions for an almost Q-module to be a Q-module. Using these results, some characterizations are given for Noetherian Q-modules. | Turk J Math 33 (2009) , 215 – 225. ¨ ITAK ˙ c TUB doi:10.3906/mat-0710-22 Q-modules ¨ C. Jayaram and Unsal Tekir Abstract In this paper we characterize Q-modules and almost Q-modules. Next we estblish some equivalent conditions for an almost Q-module to be a Q-module. Using these results, some characterizations are given for Noetherian Q-modules. Key Words: Q-module, almost Q-module, Q-ring, almost Q-ring, Laskerian ring, Laskerian module, Noetherian spectrum, multiplication ideal and quasi-principal ideal. 1. Introduction Throughout this paper R denotes a commutative ring with identity and all modules are unital R -modules. L(R) denotes the lattice of all ideals of R . Throughout this paper M denotes a unital R -module. In this paper we introduce and study the concepts of Q -modules and almost Q -modules which are generalizations of Q -rings [4] and almost Q -rings [14]. We prove that a faithful R -module M is a Q -module if and only if R is a Q -ring and M is a multiplication module (see Theorem 1). It is shown that a faithful R -module M is a Q -module if and only if M is a Laskerian multiplication module in which every non maximal prime submodule is a finitely generated multiplication submodule (see Theorem 2). Next we establish several characterizations for almost Q -modules (see Theorem 3, Theorem 4, Theorem 5, Theorem 6 and Theorem 7). Using these results, some equivalent conditions are established for an almost Q -module to be a Q -module (see Theorem 8). Finally Noetherian Q -modules are characterized (see Theorem 9). 2. Basic notions √ For any x ∈ R , the principal ideal generated by x is denoted by (x). For any ideal I of R , I denotes the radical of I . Recall that an ideal I of R is called a multiplication ideal if for every ideal J ⊆ I , there exists an ideal K with J = KI . Multiplication ideals have been extensively studied; for example, see [1], [2] and [11]. If I is a multiplication ideal, then I is locally principal [1, Theorem 1 and .

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.