Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Q-modules
Đang chuẩn bị liên kết để tải về tài liệu:
Q-modules
Hùng Cường
143
11
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
In this paper we characterize Q-modules and almost Q-modules. Next we estblish some equivalent conditions for an almost Q-module to be a Q-module. Using these results, some characterizations are given for Noetherian Q-modules. | Turk J Math 33 (2009) , 215 – 225. ¨ ITAK ˙ c TUB doi:10.3906/mat-0710-22 Q-modules ¨ C. Jayaram and Unsal Tekir Abstract In this paper we characterize Q-modules and almost Q-modules. Next we estblish some equivalent conditions for an almost Q-module to be a Q-module. Using these results, some characterizations are given for Noetherian Q-modules. Key Words: Q-module, almost Q-module, Q-ring, almost Q-ring, Laskerian ring, Laskerian module, Noetherian spectrum, multiplication ideal and quasi-principal ideal. 1. Introduction Throughout this paper R denotes a commutative ring with identity and all modules are unital R -modules. L(R) denotes the lattice of all ideals of R . Throughout this paper M denotes a unital R -module. In this paper we introduce and study the concepts of Q -modules and almost Q -modules which are generalizations of Q -rings [4] and almost Q -rings [14]. We prove that a faithful R -module M is a Q -module if and only if R is a Q -ring and M is a multiplication module (see Theorem 1). It is shown that a faithful R -module M is a Q -module if and only if M is a Laskerian multiplication module in which every non maximal prime submodule is a finitely generated multiplication submodule (see Theorem 2). Next we establish several characterizations for almost Q -modules (see Theorem 3, Theorem 4, Theorem 5, Theorem 6 and Theorem 7). Using these results, some equivalent conditions are established for an almost Q -module to be a Q -module (see Theorem 8). Finally Noetherian Q -modules are characterized (see Theorem 9). 2. Basic notions √ For any x ∈ R , the principal ideal generated by x is denoted by (x). For any ideal I of R , I denotes the radical of I . Recall that an ideal I of R is called a multiplication ideal if for every ideal J ⊆ I , there exists an ideal K with J = KI . Multiplication ideals have been extensively studied; for example, see [1], [2] and [11]. If I is a multiplication ideal, then I is locally principal [1, Theorem 1 and .
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.