Đang chuẩn bị liên kết để tải về tài liệu:
Construction of the second Hankel determinant for a new subclass of bi-univalent functions

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

In this paper, we will discuss a newly constructed subclass of bi-starlike functions. Furthermore, we establish bounds for the coefficients and get the second Hankel determinant for the class SΣ(α, β). | Turk J Math (2018) 42: 2876 – 2884 © TÜBİTAK doi:10.3906/mat-1507-39 Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ Research Article Construction of the second Hankel determinant for a new subclass of bi-univalent functions Şahsene ALTINKAYA∗,, Sibel YALÇIN, Department of Mathematics, Faculty of Arts and Science, Uludağ University, Bursa, Turkey Received: 09.07.2015 • Accepted/Published Online: 28.04.2016 • Final Version: 27.11.2018 Abstract: In this paper, we will discuss a newly constructed subclass of bi-starlike functions. Furthermore, we establish bounds for the coefficients and get the second Hankel determinant for the class SΣ (α, β). Key words: Analytic functions, bi-starlike functions, Hankel determinant 1. Introduction Let A denote the class of functions of the form f (z) = z + ∞ ∑ an z n , (1) n=2 which are analytic in the open unit disk U = {z : |z| β (0 ≤ β β, 2 f (z) f (z) and { ( ( ′ ) 1 )} 1 wg ′ (w) wg (w) α ℜ + > β, 2 g(w) g(w) (0 ≤ β 0. Lemma 2 [24] If the function p ∈ P, |pn | ≤ 2 and (n ∈ N = {1, 2, . . .}) 2 2 p2 − p1 ≤ 2 − |p1 | . 2 2 Lemma 3 [12] If the function p ∈ P , then 2p2 = p21 + x(4 − p21 ) 4p3 = p31 + 2(4 − p21 )p1 x − p1 (4 − p21 )x2 + 2(4 − p21 )(1 − |x| )z for some x, z with |x| ≤ 1 and |z| ≤ 1. 2878 2 ALTINKAYA and YALÇIN/Turk J Math 3. Main results Theorem 4 Let f given by (1) be in the class SΣ (α, β), 0 < α ≤ 1 and 0 ≤ β < 1. Then a2 a4 − a23 ≤ Proof [ 16α2 3(α+1)2 2 (1 − β) 8(6α3 +2α2 +3α+1) 3(α+1)3 [ β ∈ 0, 1 − 2 4α (α+1)2 { 2 (1 − β) 1 − [ β ∈ 1− ] 2 (1 − β) + 1 , √ 9α(α+1)2 +(α+1) 81α2 (α+1)2 +192(α+1)(6α3 +2α2 +3α+1) 32(6α3 +2α2 +3α+1) 2 9{2α(1−β)+(α+1)} (α+1) 32(6α3 +2α2 +3α+1)(1−β)2 −36α(α+1)2 (1−β)−15(α+1)3 9α(α+1)2 +(α+1) √ ] . } ) 81α2 (α+1)2 +192(α+1)(6α3 +2α2 +3α+1) ,1 32(6α3 +2α2 +3α+1) . Let f ∈ B(α, β). Then 1 2 1 2 where p, q ∈ P and g = f −1 ( ( zf ′

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.