Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Kỹ Thuật - Công Nghệ
Kiến trúc - Xây dựng
Ứng dụng trí tuệ nhân tạo để dự đoán tiến độ thi công nhà lắp ghép
Đang chuẩn bị liên kết để tải về tài liệu:
Ứng dụng trí tuệ nhân tạo để dự đoán tiến độ thi công nhà lắp ghép
Minh Hằng
82
4
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Trong nghiên cứu này, bốn mô hình đã được xây dựng để dự báo tiến độ thi công lắp ghép. Năm mươi dữ liệu công trình đã được thu thập, phương pháp cross validation được áp dụng để kết quả dự báo được khách quan. Với bốn mô hình được xây dựng, mô hình SVM cho kết quả tốt nhất với khả năng khái quát hóa và hội tụ để xác định tiến độ thi công lắp ghép. | ISSN 1859-1531 - TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ ĐẠI HỌC ĐÀ NẴNG, SỐ 11(132).2018, QUYỂN 1 41 ỨNG DỤNG TRÍ TUỆ NHÂN TẠO ĐỂ DỰ ĐOÁN TIẾN ĐỘ THI CÔNG NHÀ LẮP GHÉP USING ARTIFICIAL INTELLIGENT TECHNIQUES IN PRECAST CONSTRUCTION PROJECT PROGRESS/ SCHEDULE ESTIMATION Trần Đức Học1, Phạm Anh Đức2, Nguyễn Đăng Trình1, Huỳnh Ngọc Huệ1 1 Trường Đại học Bách khoa - Đại học Quốc gia TP.HCM; tdhoc@hcmut.edu.vn, ndtrinh@hcmut.edu.vn, huynhngochuexd@gmail.com 2 Trường Đại học Bách khoa - Đại học Đà Nẵng; paduc@dut.udn.vn Tóm tắt - Xác định tiến độ thi công lắp ghép là một vấn đề quan trọng đối với chủ đầu tư lẫn nhà thầu thi công lắp ghép. Về đặc trưng công trình, có nhiều yếu tố ảnh hưởng đến tiến độ thi công lắp ghép, nên các thuật toán CART (Classification and Regression Trees), ANN (Artificial Neural Networks), SVM (Support Vector Machine) và Ensemble được sử dụng để giải quyết vấn đề này. Trong nghiên cứu này, bốn mô hình đã được xây dựng để dự báo tiến độ thi công lắp ghép. Năm mươi dữ liệu công trình đã được thu thập, phương pháp Cross Validation được áp dụng để kết quả dự báo được khách quan. Với bốn mô hình được xây dựng, mô hình SVM cho kết quả tốt nhất với khả năng khái quát hóa và hội tụ để xác định tiến độ thi công lắp ghép. Abstract - Determining construction schedule of Prefabricated construction is an important issue for investors and Prefabricated Contractors. In terms of Construction characteristics, there are many factors that affect the progress of assembly, so Classification and Regression Trees (CARTs), ANN (Artificial Neural Networks), SVM (Support Vector Machine) and Ensemble are used to solve this problem. In this study, four models are constructed to forecast the progress of the assembly. Fifty data Constructions have been collected. The Cross Validation method is applied to predict the result. With four models built, the SVM model gives the best results with low error and convergence
TÀI LIỆU LIÊN QUAN
Bài giảng Trí tuệ nhân tạo - Bài 1, 2: Giới thiệu về Trí tuệ nhân tạo - Agen thông minh
Giáo trình Trí Tuệ Nhân Tạo - chapter 1
Tri tuệ nhân tạo và hệ chuyên gia - TS. Nguyễn Thiện Thành
Trí tuệ nhân tạo - một phương diện của văn hóa ứng dụng
Trí tuệ nhân tạo trong lĩnh vực dầu khí và khả năng ứng dụng tại Việt Nam
Giáo trình trí tuệ nhân tạo
Ứng dụng mạng trí tuệ nhân tạo dự báo phân bố vật liệu núi lửa trong tập D, mỏ X, bể Cửu Long
Đề xuất hệ thống trong nhận dạng cử chỉ, hành động sử dụng trí tuệ nhân tạo cho các ứng dụng nhà thông minh
Tìm hiểu về trí tuệ nhân tạo
Ứng dụng trí tuệ nhân tạo để khoanh vùng cơ quan trong xạ trị
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.