Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Kỹ Thuật - Công Nghệ
Cơ khí - Chế tạo máy
Kalman consensus based multi-robot slam with a rao blackwellized particle filter
Đang chuẩn bị liên kết để tải về tài liệu:
Kalman consensus based multi-robot slam with a rao blackwellized particle filter
Trung Nhân
182
5
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
This paper addresses a multi-robot SLAM approach based on the Kalman consensus filter (KCF). Under the unknown initial condition, a reference robot designates the initial poses of other robots when the first rendezvous between them occurs. Accordingly, past and current poses and maps of these robots are estimated by an acausal filter and a causal filter. | Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015 Kalman Consensus Based Multi-Robot SLAM with a Rao-Blackwellized Particle Filter Seung-Hwan Lee and Beom H. Lee Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea Email: {leeyiri1, bhlee} @snu.ac.kr they basically assumed known data association for features and the known initial condition. To perform Multi-robot SLAM, the information filter and the information consensus filter are used together in [7]. They compare the results from the information consensus filter and covariance intersection (CI). But the known conditions are still assumed in the simulation. In our previous work [8], [9], we proposed a multirobot SLAM framework. Under the unknown initial condition, robots initialize their poses when the first rendezvous with the reference robot occurs. Subsequently, the poses and maps between the N-1th and the Nth rendezvous are compensated whenever the Nth rendezvous occurs again. For the compensation, current poses for two robots are fused by Covariance Intersection (CI). Therefore, this paper presents a Rao-Blackwellized particle filter based multi-robot SLAM using the KCF in the event of rendezvous. Unlike the conventional approach, we consider several rendezvous between robots. The robots are initialized at the first meeting with a reference robot. In the case of the second rendezvous or more rendezvous, the current pose and covariance of two robots are fused via the procedure of the KCF. Based on these poses, their past poses and maps are compensated through backtracking until the most recent rendezvous point. In two simulations, we show the performance of the proposed approach in terms of the accuracy of the robot pose and map. First the conventional approach for the multi-robot SLAM framework and its problems are described in Chapter 2. In Chapter 3, the proposed approach is explained in detail. Chapter 4 shows the accuracy of the robot pose .
TÀI LIỆU LIÊN QUAN
Kalman consensus based multi-robot slam with a rao blackwellized particle filter
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.