Đang chuẩn bị liên kết để tải về tài liệu:
Cải thiện khả năng phát hiện tấn công mạng bằng kỹ thuật học sâu

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Bài viết này đề cập đến học sâu như một hướng tiếp cận mới có thể giúp hệ thống IDS cải thiện độ chính xác và tăng tốc độ phân tích khi đầu vào quá lớn. Với việc áp dụng mạng thần kinh sâu như mạng đa lớp ẩn (Multilayer Perceptron - MLP) và mạng neural hồi quy (Recurrent Neural Network – RNN) trên tập dữ liệu KDD99 được sử dụng để đánh giá độ chính xác (Accuracy), độ li phân lớp (MSE – Mean Squared Error) và ma trận hỗn loạn. | 7 Tạp chí Khoa học & Công nghệ Số 1 Cải thiện khả n ng phát hiện tấn công mạng bằng kỹ thuật học sâu Tô Trọng Tín1, Trần V n L ng2, 3 1 Học viện Công nghệ Bưu ch nh viễn thông, 2Viện Cơ học và Tin học ứng dụng, VAST, 3Đại học Nguyễn Tất Thành tiznto@gmail.com, langtv@vast.vn Tóm tắt Hệ thống phát hiện tấn công mạng (Intrusion Detection System - IDS) là một phần mềm bảo mật được thiết kế để cảnh báo một cách tự động cho các quản trị viên khi có ai đó ho c cái gì đó đang cố gắng xâm nhập hệ thống thông qua các hoạt động nguy hiểm ho c vi phạm chính sách bảo mật. Nhiều nghiên cứu đ áp dụng thành công các thuật toán máy học để hệ thống IDS có khả n ng tự học và cập nhật các cuộc tấn công mới. Nhưng để hạn chế báo động nhầm và t ng khả n ng dự đoán các cuộc tấn công, thì ngoài khả n ng tự quyết định, IDS cần phải có tư duy ph n tích. Một khả n ng mà các nhà nghiên cứu gọi là học sâu. Bài viết này đề cập đến học s u như một hướng tiếp cận mới có thể giúp hệ thống IDS cải thiện độ ch nh xác và t ng tốc độ phân tích khi đầu vào quá lớn. Với việc áp dụng mạng thần kinh s u như mạng đa lớp n (Multilayer Perceptron - MLP) và mạng neural hồi quy (Recurrent Neural Network – RNN) trên tập dữ liệu KDD99 được sử dụng để đánh giá độ ch nh xác (Accuracy), độ l i phân lớp (MSE – Mean Squared Error) và ma trận h n loạn (Confusion Matrix). Hiệu quả đạt được là 98,2% với MLP và 99,04% với RNNs, so với 92,6% của SVM và 88.46% của Naïve Bayes Nhận Được duyệt Công bố 19.12.2017 21.01.2018 01.02.2018 Từ khóa IDS, mạng máy tính, mạng thần kinh, học sâu, máy học ® 2018 Journal of Science and Technology - NTTU 1. Giới thiệu Trước sự tiến bộ của thông tin và truyền thông, những mối đe dọa an ninh mạng c ng t ng lên rất nhiều, hệ thống phát hiện tấn công mạng (IDS) là một trong những vấn đề bảo mật rất đáng quan t m, IDS hoạt động bằng cách theo dõi hoạt động của hệ thống thông qua việc kiểm tra các l h ng bảo mật, tính toàn vẹn của các tệp tin và tiến hành phân tích các m u dựa trên

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.