Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Kỹ Thuật - Công Nghệ
Điện - Điện tử
Phân loại bệnh rung nhĩ dùng XGBoost và học sâu
Đang chuẩn bị liên kết để tải về tài liệu:
Phân loại bệnh rung nhĩ dùng XGBoost và học sâu
Thanh Tuyền
841
7
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Bài viết này đề xuất một phương pháp phân loại tín hiệu rung nhĩ được đo từ các thiết bị điện tâm đồ (ECG) cầm tay. Phương pháp tiếp cận của chúng tôi sử dụng kết hợp XGBoost và mô hình học sâu (deep learning) trong đó XGBoost được xây dựng trên bộ đặc trưng được tăng cường và tinh chỉnh qua thực nghiệm, thực hiện vai trò sinh dữ liệu cho mô hình học sâu. | Nguyễn Hồng Quang và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 189(13): 85 - 91 PHÂN LOẠI BỆNH RUNG NHĨ DÙNG XGBOOST VÀ HỌC SÂU Nguyễn Hồng Quang1*, Trịnh Văn Loan1, Phạm Ngọc Hưng3, Hà Quang Thái2, Bùi Trung Anh2, Phan Công Mạnh2 1 Trường Đại học Bách Khoa Hà Nội, Công ty TNHH phát triển phần mềm Toshiba (Việt Nam), 3 Trường Đại học Sư phạm Kỹ thuật Hưng Yên 2 TÓM TẮT Bài báo này đề xuất một phương pháp phân loại tín hiệu rung nhĩ được đo từ các thiết bị điện tâm đồ (ECG) cầm tay. Phương pháp tiếp cận của chúng tôi sử dụng kết hợp XGBoost và mô hình học sâu (deep learning) trong đó XGBoost được xây dựng trên bộ đặc trưng được tăng cường và tinh chỉnh qua thực nghiệm, thực hiện vai trò sinh dữ liệu cho mô hình học sâu. Chúng tôi sử dụng các kỹ thuật phân đoạn và sinh nhãn cho các đoạn tín hiệu, giúp tăng cường, tạo sự cân bằng và độ tin cậy cho bộ dữ liệu. Mô hình học sâu với hướng tiếp cận học chuyển đổi (transfer learning) được sử dụng để thực hiện phân loại các đoạn tín hiệu dưới dạng ảnh phổ tần số. Chúng tôi thử nghiệm mô hình trên bộ dữ liệu của cuộc thi PhysioNet/Computing in Cardiology Challenge 2017 (PCCC 2017) để phân loại 4 loại tín hiệu: rung nhĩ, bình thường, các loại bệnh tim khác và nhiễu. Mô hình học sâu thể hiện khả năng dự đoán tốt trên các đoạn dữ liệu ngắn với kết quả F1 = 0.8397. Nghiên cứu của chúng tôi mở ra một hướng phát triển mới cho bài toán phân loại tín hiệu ECG khi thực hiện phân loại trên các đoạn tín hiệu ngắn, đồng thời mang đến một giải pháp ứng dụng các mô hình học sâu khi bài toán gặp những hạn chế về mặt dữ liệu. Từ khóa: Tín hiệu điện tim, Bệnh rung nhĩ, học sâu, XGBoost, mạng nơ ron tích chập, Biến đổi Wavelet rời rạc GIỚI THIỆU* Rung nhĩ (hay rung tâm nhĩ, atrial fibrillation) là một trong những bệnh rối loạn nhịp tim thường gặp. Rung nhĩ có nguy cơ dẫn đến suy tim, đột quỵ, và các biến chứng tim mạch nguy hiểm khác. Người bị bệnh thường phải đến bệnh viện khám định kỳ để theo dõi nhịp tim bằng hệ thống máy đo điện tâm .
TÀI LIỆU LIÊN QUAN
Định nghĩa và sinh lý bệnh của rung nhĩ
Bài giảng Dự phòng và điều trị rung nhĩ ở người tăng huyết áp - TS.BS Phạm Quốc Khánh
Bài giảng Cập nhật về xử trí rung nhĩ 2016 - GS. TS. Nguyễn Lân Việt
Luận án Tiến sĩ Y học: Nghiên cứu đặc điểm lâm sàng, cận lâm sàng và nồng độ NT-proBNP ở bệnh nhân rung nhĩ mạn tính không do bệnh van tim
Phân loại bệnh rung nhĩ dùng XGBoost và học sâu
Bài giảng Rung nhĩ và các thuốc chống đông thế hệ mới - BS. Nguyễn Tuấn Hải
Bài giảng Cập nhật chẩn đoán và điều trị rung nhĩ ESC 2020 - PGS.TS. Lê Thị Bích Thuận
Bài giảng Rụng tóc - TS. BS Trần Ngọc Ánh
Bài giảng bệnh cây rừng
Bài giảng Sử dụng kháng đông ở bệnh nhân cao tuổi rung nhĩ
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.