Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Luận Văn - Báo Cáo
Thạc sĩ - Tiến sĩ - Cao học
Tóm tắt Luận văn Thạc sĩ Công nghệ thông tin: Phương pháp phân cụm dựa trên tập thô và giải thuật di truyền
Đang chuẩn bị liên kết để tải về tài liệu:
Tóm tắt Luận văn Thạc sĩ Công nghệ thông tin: Phương pháp phân cụm dựa trên tập thô và giải thuật di truyền
Tấn Trình
86
30
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Luận văn trình bày khảo cứu một cách hệ thống của bài báo các kiến thức về phân cụm dữ liệu rõ, thô theo hướng KMeans và ứng dụng giải thuật di truyền để phân cụm dữ liệu thô. Trên cơ sở đó xây dựng chương trình thực nghiệm trên một số bộ dữ liệu, kết quả cho thấy ưu điểm của phương pháp mới. | ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC CÔNG NGHỆ HOÀNG HUYỀN TRANG PHƢƠNG PHÁP PHÂN CỤM DỰA TRÊN TẬP THÔ VÀ GIẢI THUẬT DI TRUYỀN Chuyên ngành: Hệ thống thông tin Mã số: 60480104 TÓM TẮT LUẬN VĂN THẠC SĨ Hà Nội - 2016 1 MỞ ĐẦU Phân cụm dữ liệu là một trong những nghiên cứu quan trọng trong khai thác dữ liệu và được áp dụng cho đa lĩnh vực [7,8]. Mục tiêu chính trong phân cụm dữ liệu là để phân loại các đối tượng không có nhãn thành nhiều cụm mà các đối tượng thuộc cùng một cụm thì tương tự nhau và khác nhau đối với các cụm khác nhau. Phân cụm dữ liệu được chia làm hai loại là phân cụm cứng/rõ và phân cụm mềm [12,15]. Một kỹ thuật được sử dụng phổ biến trong phân cụm dữ liệu là thuật toán K-Means, thuộc phân cụm rõ, với sự hội tụ nhanh chóng và khả năng tìm kiếm địa phương mạnh mẽ. Trong quá trình phân cụm K-Means truyền thống, các đối tượng dữ liệu thu được trong cụm là nhất định. Tuy nhiên, trong thực tế giữa những đối tượng thường không có ranh giới rõ ràng. Để tăng hiệu quả và kết quả chính xác cho phân cụm việc sử dụng lý thuyết tập thô tiếp cận hỗ trợ phân cụm K-Meansđược đề xuất. Mặc dù giải thuật K-Means thô có khả năng tìm kiếm địa phương mạnh mẽ nhưng lại dễ rơi vào cực trị địa phương. Một trong những biện pháp có thể khắc phục được hạn chế này là kết hợp với giải thuật di truyền là một thuật toán dựa trên nguyên tắc của sự tiến hóa sinh học, có lượng lớn số song song tiềm ẩn thực hiện không gian tìm kiếm lớn và cung cấp giải pháp tối ưu hóa toàn cầu giúp tránh được tối ưu địa phương. Luận văn trình bày khảo cứu một cách hệ thống của bài báo [6] các kiến thức về phân cụm dữ liệu rõ, thô theo hướng KMeans và ứng dụng giải thuật di truyền để phân cụm dữ liệu thô. Trên cơ sở đó xây dựng chương trình thực nghiệm trên một số bộ dữ liệu, kết quả cho thấy ưu điểm của phương pháp mới. Cấu trúc của luận văn gồm 3 chương : Chương I. Phân cụm dữ liệu và một số vấn đề liên quan. Chương II. Phân cụm dựa trên tập thô và thuật toán di truyền. Chương III. Cài đặt và
TÀI LIỆU LIÊN QUAN
Tóm tắt luận văn Thạc sĩ: Nghiên cứu phương pháp bảo mật tin nhắn trên điện thoại di động
Tóm tắt Luận văn Thạc sĩ Công nghệ thông tin: Tìm hiểu một số phương pháp luận xây dựng kiến trúc tổng thể và phương pháp xây dựng khung kiến trúc tổng thể FEA cho Hawaii
Tóm tắt Luận văn Thạc sĩ Công nghệ thông tin: Nghiên cứu phương pháp luận xây dựng kiến trúc tổng thể, ứng dụng ITI- GAF xây dựng mô hình đại học điện tử
Tóm tắt luận văn Thạc sĩ: Nghiên cứu các phương pháp trích rút văn bản từ trang web và ứng dụng
Tóm tắt luận văn thạc sĩ: Tạo động lực làm việc cho người lao động tại công ty viễn thông và công nghệ thông tin điện lực miền Trung
Tóm tắt Luận văn Thạc sĩ Công nghệ thông tin: Nghiên cứu và phát triển phương pháp phân lớp lúa ở Đồng bằng sông Hồng sử dụng ảnh vệ tinh landsat 8
Tóm tắt Luận văn Thạc sĩ Công nghệ thông tin: Nghiên cứu và đánh giá các phương pháp nội suy ảnh viễn thám cho bài toán phân loại lớp phủ đô thị tại Việt Nam
Tóm tắt Luận văn Thạc sĩ Sư phạm Vật lí: Tổ chức dạy học hợp tác chương Chất khí Vật lí lớp 10 THPT với sự hỗ trợ của công nghệ thông tin
Tóm tắt luận văn Thạc sĩ Lý luận và phương pháp dạy học bộ môn Mỹ thuật: Nâng cao chất lượng dạy học các môn Mỹ thuật cơ sở tại khoa công nghệ thông tin trường Cao đẳng nghề Bách khoa Hà Nội
Tóm tắt Luận văn Thạc sĩ Công nghệ thông tin: Tóm tắt văn bản sử dụng các kỹ thuật trong deep learning
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.