Đang chuẩn bị liên kết để tải về tài liệu:
Bài giảng Kinh tế lượng 1: Chương 6 - Bùi Dương Hải (2017)

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Bài giảng "Kinh tế lượng 1 - Chương 6: Hồi quy với chuỗi thời gian" cung cấp cho người học các kiến thức: Một số khái niệm, các giả thiết OLS khi ước lượng, một số mô hình chuỗi thời gian cơ bản, tính chất mẫu lớn và ước lượng OLS. . | Bài giảng Kinh tế lượng 1: Chương 6 - Bùi Dương Hải (2017) Chương 6. HỒI QUY VỚI CHUỖI THỜI GIAN ▪ Các chương trước đề cập số liệu chéo (thời gian cố định, quan sát các cá thể khác nhau) ▪ Giả thiết OLS đã xét chỉ phù hợp với số liệu chéo ▪ Kinh tế vĩ mô và cả vi mô thường xét số liệu theo thời gian KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 178 Chương 6. Hồi quy với chuỗi thời gian NỘI DUNG CHƯƠNG 6 ▪ 6.1. Một số khái niệm ▪ 6.2. Các giả thiết OLS khi ước lượng ▪ 6.3. Một số mô hình chuỗi thời gian cơ bản ▪ 6.4. Tính chất mẫu lớn và ước lượng OLS KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 179 Chương 6. Hồi quy với chuỗi thời gian 6.1. MỘT SỐ KHÁI NIỆM ▪ Số liệu theo thời gian cách đều nhau ▪ Phải theo trình tự cố định ▪ Biến thời kỳ (flow) hoặc thời điểm (stock) ▪ Quá trình ngẫu nhiên: (Y | t ) hoặc Y (t ) ▪ Số liệu là rời rạc: Yt , t = 1, 2, hoặc t = 0, 1, 2, ▪ Ví dụ: GDP từ 1990 đến 2015: GDPt ▪ Biến trễ (lag) của Yt : Yt – 1, Yt – 2 , , hoặc Y(-1), Y(-2) KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 180 Chương 6. Hồi quy với chuỗi thời gian 6.1. Một số khái niệm Sai phân và tự tương quan ▪ Sai phân bậc 1 (first order difference) (Yt ) = Yt – Yt –1 ▪ Sai phân hai thời kỳ 2(Yt ) = Yt – Yt – 2 ▪ Sai phân bậc 2 (second order difference) 2(Yt ) = ( (Yt )) = (Yt ) – (Yt–1) ▪ Tự tương quan bậc 1 (first order autocorrelation) (Yt , Yt –1) 0 ▪ Tự tương quan bậc p (p th order autocorrelation) (Yt , Yt – p ) 0 KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 181 Chương 6. Hồi quy với chuỗi thời gian 6.1. Một số khái niệm Chuỗi dừng ▪ Chuỗi Yt gọi là chuỗi dừng (stationary time series) nếu thỏa mãn 3 điều kiện • (i) E(Yt ) = không đổi t • (ii) Var(Yt ) = σ 2 không đổi t • (iii) Cov(Yt , Yt – p ) = p chỉ thay đổi theo p ▪ Vi phạm ít nhất 1 trong 3 điều kiện chuỗi không dừng (non-stationary time .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.