Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Công Nghệ Thông Tin
Cơ sở dữ liệu
Dự đoán dữ liệu dạng chuỗi sử dụng mạng thần kinh LSTM
Đang chuẩn bị liên kết để tải về tài liệu:
Dự đoán dữ liệu dạng chuỗi sử dụng mạng thần kinh LSTM
Mai Linh
509
8
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Hiệu quả của việc phỏng đoán được đánh giá dựa vào hàm tính sai số RMSE. Sai sô càng thấp thì dự đoán càng chính xác. Để việc so sánh trở nên dễ nhìn, tác giả đã mô phỏng kết quả thành dạng biểu đồ so sánh giá trị thực và giá trị phỏng đoán. Kết quả cho thấy giá trị thực và giá trị phỏng đoán xấp xỉ bằng nhau. Chứng tỏ việc sử dụng LSTM cho dữ liệu dạng chuỗi sắp xếp theo thứ tự thời gian là hiệu quả và là tiền đề tốt để phát triển các bài toán tương tự mang tính ứng dụng cao hơn. Mời các bạn cùng tham khảo chi tiết nội dung bài viết! | DỰ ĐOÁN DỮ LIỆU DẠNG CHUỖI SỬ DỤNG MẠNG THẦN KINH LSTM Bùi Quốc Khánh Trường Đại học Hà Nội Tóm tắt Mạng thần kinh hiện đang được ứng dụng rất phổ biến trong các ngành khoa học nhằm cải thiện năng suất và chất lượng của cuộc sống. Một trong những ứng dụng phổ biến là dự đoán kết quả của quá trình sản xuất dựa vào dữ liệu được thu thập trong thời gian trước đó. Bài báo sử dụng dữ liệu sản lượng sữa được cập nhật hàng tháng của một nhà máy sản xuất sữa và dựa vào đó dự đoán sản lượng sữa trong khoảng thời gian trong tương lại. Dữ liệu được chia thành 2 phần Một phần dùng cho việc tập huấn dữ liệu training data và một phần dùng để kiểm thử testing data dữ liệu được sắp xếp theo thứ tự thời gian nên testing data sẽ bao gồm các mốc thời gian trong tương lai so với training data. Tác giả sau đó sử dụng mạng thần kinh LSTM được hỗ trợ bởi gói sklearn và Keras bộ kit rất nổi tiếng trong việc hỗ trợ các thuật toán liên quan đến học máy để dự đoán sản lượng của testing data. Hiệu quả của việc phỏng đoán được đánh giá dựa vào hàm tính sai số RMSE. Sai sô càng thấp thì dự đoán càng chính xác. Để việc so sánh trở nên dễ nhìn tác giả đã mô phỏng kết quả thành dạng biểu đồ so sánh giá trị thực và giá trị phỏng đoán. Kết quả cho thấy giá trị thực và giá trị phỏng đoán xấp xỉ bằng nhau. Chứng tỏ việc sử dụng LSTM cho dữ liệu dạng chuỗi sắp xếp theo thứ tự thời gian là hiệu quả và là tiền đề tốt để phát triển các bài toán tương tự mang tính ứng dụng cao hơn. Từ khóa Artificial Neural Networks ANN Sequential Data Long Short-Term Memory LSTM Keras Abstract This paper examines the outstanding application of Long Short-Term Memory LSTM Neural Network in predicting temporal data using Keras. The performance of the prediction is then evaluated by Root Mean Squared Error RMSE and the visualization of the result is also presented. Keywords Artificial Neural Networks ANN Sequential Data Long Short-Term Memory LSTM Keras SEQUENCE PREDICTION USING LONG SHORT- TERM MEMORY NEURAL NETWORK I. .
TÀI LIỆU LIÊN QUAN
Dự đoán dữ liệu dạng chuỗi sử dụng mạng thần kinh LSTM
Xác định các tham số vật liệu để dự đoán đường cong biến dạng cho quá trình kéo/nén vật liệu tấm DP590
Ứng dụng kỹ thuật định danh từ dữ liệu video vào việc nhận dạng con người, hành động và địa điểm xuất hiện
Nghiên cứu sử dụng chuyển vị nút để chẩn đoán hư hại trong kết cấu dạng dầm
Phân tích thực trạng đăng ký nguyên liệu làm thuốc trong nước tại Việt Nam giai đoạn 2009-2019
Quản lý đề án
Quản lý địa ốc
Chủ đề 1 Stored-Procedure & Trigger & Function
Quản Lý Chuyến Bay
Quản lý hàng hóa
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.