Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Kỹ Thuật - Công Nghệ
Kĩ thuật Viễn thông
Tổng hợp tiếng nói tiếng Việt dựa trên mạng CNN với tập dữ liệu hạn chế
Đang chuẩn bị liên kết để tải về tài liệu:
Tổng hợp tiếng nói tiếng Việt dựa trên mạng CNN với tập dữ liệu hạn chế
Hạ Uyên
101
6
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Bài viết đề xuất một mô hình tổng hợp tiếng nói tiếng Việt dựa trên việc áp dụng phương pháp Transfer Learning vào mô hình Deep Convolution Neural Network để sinh ra tiếng nói mới dựa trên tập dữ liệu huấn luyện rất nhỏ. Mô hình của chúng tôi có thể tổng hợp giọng nói mới với lượng dữ liệu huấn luyện nhỏ hơn 45 lần so với khi dùng mô hình Tacotron 2. | Hội nghị Quốc gia lần thứ 24 về Điện tử Truyền thông và Công nghệ Thông tin REV-ECIT2021 Tổng hợp tiếng nói tiếng Việt dựa trên mạng CNN với tập dữ liệu hạn chế Lâm Quang Tường Nguyễn Tấn Đạt Lâm Khả Hân Đỗ Đức Hào Công ty Cổ phần Công nghệ OLLI Technology Trường Đại học Bách Khoa - Đại học Quốc Gia TP.HCM Thành phố Hồ Chí Minh Việt Nam Email tuong han hao @olli-ai.com dat.nguyen_bk@hcmut.edu.vn Tóm tắt nội dung Bài báo đề xuất một mô hình tổng bản chứa nội dung của câu nói đó. Hay trong bài toán hợp tiếng nói tiếng Việt dựa trên việc áp dụng phương phân tích cảm xúc 2 tập dữ liệu cần có đánh giá của pháp Transfer Learning vào mô hình Deep Convolution khách hàng để phân tích cảm xúc của họ đối với từng Neural Network để sinh ra tiếng nói mới dựa trên tập dữ liệu huấn luyện rất nhỏ. Mô hình của chúng tôi có thể sản phẩm khác nhau . Đối với các mô hình tổng hợp tổng hợp giọng nói mới với lượng dữ liệu huấn luyện nhỏ tiếng nói việc xây dựng một tập dữ liệu bao gồm các hơn 45 lần so với khi dùng mô hình Tacotron 2. Mô hình cặp câu và thu âm giọng nói cũng hết sức quan trọng. của chúng tôi gồm hai giai đoạn 1 Huấn luyện một mô Tập dữ liệu huấn luyện sẽ ảnh hưởng trực tiếp đến độ tự hình DC-TTS trên giọng nói ban đầu với nhiều dữ liệu nhiên và độ thông minh của giọng nói sau khi được tổng 2 Áp dụng phương pháp Transfer Learning vào mô hình hợp. Tuy nhiên việc thu thập và xử lý tập dữ liệu với đã được huấn luyện trước đó để sinh giọng mới với lượng nhiều giờ giọng nói thu âm cũng gặp nhiều khó khăn. ít dữ liệu thu âm. Sau quá trình huấn luyện chỉ với 320 câu nói khoảng 1 giờ mô hình sẽ có thể tạo ra giọng nói Ví dụ như việc nghe lại câu nói và đối chiếu với nội mới với chất lượng cao. Độ đo MOS trên giọng nói sinh dung để có thể loại bỏ các sai sót đến từ quá trình thu ra xấp xĩ với kết quả của mô hình Tacotron 2 nhưng chỉ âm. Vì vậy chúng tôi đề xuất một ý tưởng xây dựng một với lượng dữ liệu huấn luyện nhỏ hơn rất nhiều. Điều này mô hình tổng hợp tiếng nói end-to-end .
TÀI LIỆU LIÊN QUAN
Một tiếp cận tối ưu thành phần sinh tín hiệu cho hệ tổng hợp ghép nối tiếng Việt trên hệ thống tài nguyên hạn chế
Bài giảng Xử lý tiếng nói - Trịnh Văn Loan (ĐH Bách khoa Hà Nội)
Bài giảng Xử lý tiếng nói - Trịnh Văn Loan
Bài giảng Xử lý tiếng nói: Phần 2
Bài giảng: Xử lý tiếng nói
Luận văn Thạc sĩ Công nghệ thông tin: Xây dựng hệ thống tổng hợp tiếng Việt dựa trên luật
LUẬN VĂN:THỬ NGHIỆM MỘT PHƯƠNG PHÁP TỔNG HỢP TIẾNG NÓI TỪ VĂN BẢN TIẾNG VIỆT
Giáo trình môn Tiếng Anh (Trình độ: Trung cấp) - Trường TC Tổng hợp TP. Hồ Chí Minh
Luận văn Thạc sĩ Hệ thống thông tin: Nghiên cứu hệ thống tổng hợp tiếng nói theo phương pháp học sâu
Tóm tắt Luận văn Thạc sĩ ngành Hệ thống thông tin: Nghiên cứu hệ thống tổng hợp tiếng nói theo phương pháp học sâu
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.