Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Tài Liệu Phổ Thông
Trung học cơ sở
Các chuyên đề bồi dưỡng học sinh giỏi môn Toán trung học cơ sở
Đang chuẩn bị liên kết để tải về tài liệu:
Các chuyên đề bồi dưỡng học sinh giỏi môn Toán trung học cơ sở
Lương Quyền
4
71
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Tài liệu "Các chuyên đề bồi dưỡng học sinh giỏi môn Toán trung học cơ sở" trình bày về lý thuyết và bài tập các chuyên đề Toán học trong chương trình THCS như: Số chính phương; phương trình nghiệm nguyên; giải phương trình vô tỷ và hệ phương trình; . Mời các bạn cùng tham khảo! | Chuyên đề bồi dưỡng HSG Toán THCS Đăng ký học 0919.281.916 CÁC CHUYÊN ĐỀ BỒI DƯỠNG HSG TOÁN THCS Chuyên đề 1 SỐ CHÍNH PHƯƠNG I- ĐỊNH NGHĨA Số chính phương là số bằng bình phương đúng của một số nguyên. II- TÍNH CHẤT 1- Số chính phương chỉ có thể có chữ số tận cùng bằng 0 1 4 5 6 9 không thể có chữ tận cùng bằng 2 3 7 8. 2- Khi phân tích ra thừa số nguyên tố số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn. 3- Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n 1. Không có số chính phương nào có dạng 4n 2 hoặc 4n 3 n N . 4- Số chính phương chỉ có thể có một trong hai dạng 3n hoặc 3n 1. Không có số chính phương nào có dạng 3n 2 n N . 5- Số chính phương tận cùng bằng 1 4 hoặc 9 thì chữ số hàng chục là chữ số chẵn. Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2. Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ. 6- Số chính phương chia hết cho 2 thì chia hết cho 4. Số chính phương chia hết cho 3 thì chia hết cho 9 Số chính phương chia hết cho 5 thì chia hết cho 25 Số chính phương chia hết cho 8 thì chia hết cho 16. III- MỘT SỐ DẠNG BÀI TẬP VỀ SỐ CHÍNH PHƯƠNG A- Dạng 1 CHỨNG MINH MỘT SỐ LÀ SỐ CHÍNH PHƯƠNG. Bài 1 Chứng minh rằng mọi số nguyên x y thì A x y x 2y x 3y x 4y y 4 là số chính phương. Giải Ta có A x y x 2y x 3y x 4y y 4 x 2 5 xy 4 y 2 x 2 5 xy 6 y 2 y 4 Đặt x 2 5 xy 5 y 2 t t Z thì A t y 2 t y 2 y 4 t 2 y 4 y 4 t 2 x 2 5 xy 5 y 2 2 1 Chuyên đề bồi dưỡng HSG Toán THCS Đăng ký học 0919.281.916 Vì x y z Z nên x 2 Z 5 xy Z 5 y 2 Z x 2 5 xy 5 y 2 Z Vậy A là số chính phương. Bài 2 Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương. Giải Gọi 4 số tự nhiên liên tiếp đó là n n 1 n 2 n 3 n Z . Ta có n n 1 n 2 n 3 1 n . n 3 n 1 n 2 1 n 2 3n n 2 3n 2 1 Đặt n 2 3n t t N thì t t 2 1 t2 2t 1 t 1 2 n2 3n 1 2 Vì n N nên n2 3n 1 N. Vậy n n 1 n 2 3 1 là số chính phương. Bài 3 Cho S 1.2.3 2.3.4 3.4.5 . k k 1 k 2 Chứng minh rằng 4S 1 là số chính phương. 1 1 Giải Ta có k k 1 k 2 k k 1 k 2 . 4 k k 1 k 2 . k 3 k
TÀI LIỆU LIÊN QUAN
Ebook Các chuyên đề bồi dưỡng học sinh giỏi Hóa học 12: Phần 2
Ebook Các chuyên đề bồi dưỡng học sinh giỏi Hóa học 12: Phần 1
Ebook Các chuyên đề bồi dưỡng học sinh giỏi Hóa học 11: Phần 1
Ebook Các chuyên đề bồi dưỡng học sinh giỏi Hóa học 10: Phần 1
Ebook Các chuyên đề bồi dưỡng học sinh giỏi Hóa học 11: Phần 2
Chuyên đề bồi dưỡng học sinh giỏi hóa lớp 8 - Tính chất hóa học của các chất
Ebook Các chuyên đề bồi dưỡng học sinh giỏi Hóa học 10: Phần 2
Ebook Các chuyên đề bồi dưỡng học sinh giỏi Toán: Phần 2
Tuyển tập 18 chuyên đề Số học bồi dưỡng học sinh giỏi lớp 6
Ebook Các chuyên đề bồi dưỡng học sinh giỏi Toán: Phần 1
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.